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THERMAL THEORY OF COMBUSTION AND EXPLOSION
III. _THEORY OF NORMAL FLAME PROPAGATION*

By N. N. Semenov
1. EXPERIMENTAL DATA OF FLAME PROPAGAT ION

On igniting a combustible gas mizture at any point by
means of a spark or hot body the process of combustion will
be propagated throughout the mass of the mixture. This is
what occurs in the explosion of methane in coal mines and
of the fuel mixture in the internal combustion engine. If
this phenomenon is observed through a glass tube filled
with the combustible mixiture and ignited by a spark at one
end, it will readily be found that along the tube a narrow
flame front is propagated, which separates the already
burning gas (behind the front) from the fresh as yet un-
ignited gas (ahcad of the front).

In the above cases the flame moves through an initially
stationary gas, In many cases, however, the process of
combustion takes place in a combustible gas which is moving
toward the ignition source. A stationary flame will then
be obtained such as that in the usuzl Bunsen burner. In
each case we are dealing with the same phenomenon of the
motion of the flame front with respect to the unburned
gas. In the combustion of a homogeneous mixture the com-
bustion proceeds with grecat intensity because the velocity
of the reaction at the flame température is very high. The
process occurs with much less intensity when the combusti-
ble gas is not completely mixed with 2ir, as is the case,
for example, in the burning of a naphtha torch flame issuing
from a nozzle or in the combustion of a gas burner without
air opening. In thesc cases the rate of combustion is
limited not by the speed of reaction but by the rate ‘of
the mixing through diffusion of the molecules of the com-
bustible and the oxygen. In Diesel engines and forced
furnaces it is attempted to accelerate this process of
mixing of the reacting gases by constructional means that
will insure the energetic turbulence of the gas. Not-
withstanding various mathematical difficulties the theory

*"progress of Physical Science." (y.S.S.R.), vecl, 24, no. 4, .

1940, pp. 433-486,
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of purely diffusive flames is fundamentally clear since
the rate of combustion is determined by simple diffusive
processess, Much less understood is the fundamental proe-
ess of combustion of the combustible gas mixtures which
was mentioned earlier., In the present paper we shall con-
cern ourselves precisely with this problem to which our
discussion will be limited. We may note, incidentally,
in a number of cases the combustible fuel gas is always
"mixed®", This is the case when the flame is associated
with the decomposition of any single given endothermic
substance and proceeds without oxygen or air (decomposi=-
tion of (1,0, ozone, vapors of explosive gases, etc. ).
By the term combustion we shall denote the propagation

of the flame in the process of combining with oxygen or
during any other chemical processes where a certain
amount of energy is liberated and a flame may exist,

The temperature of the gases immediately behind the
flame front can be readily computed from the thermodynamic
date if the heat losses in the flame zone are not large.
This temperature for various compositions of the mixture
fluctuates generally between 1500° and B3000°X. Often (on
account of dissociation) complete combustion does not take
place in the flame front and a part of the substance may
complete its combustion behind the flame front. The Bun-~
sen burner generally operatecs with excess fuel mixtures.
The most intense combustion takes place in the inner cone
which forms a thin flame cap. In this zone the fuel bdburans
to (060, CO5, Hy, and HpO0, the relative concentration of
whiech is determined by the equilibrium of the hydrogen
gas at the combustion temperature. The products CO
and H, are burned by the diffusion of the oxygen of
the air within the wide outer cone of the burner. In
this zone the process is determined not by the speed of
reaction but by the diffusion.

The two processes in the Bunsen burner may be sepa-
rated, for which purpose the burmer is surrounded by a
glass tube held in place by a plug, as shown in figure 1,
By this means the cones can be separated. The inner cone
(a) as before forms a kind of thin flame cap over the
end of the burner. Since the glass tube becomes filled,
with the products of combustion intermingled with the
products of incomplete combustion and dissociation of the
fuel, there is no access of the oxygen of the air to the in-
side cone and therefore no outer cone of the flame is here
formed, At the exit to the air, however, these products
can burn by mixing with the oxygen and thus the outer
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the two cones separated. o
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cone (b) is displaced at the mouth of the tube and

We shall thus concern oursalves with the process of
combustion in homogeneous mixtures taking place in a very
thin zone of the flame front. (Later we shall see that the
thickness of this zone is of the order of 1072 c¢m,) This
thin zone is sufficient, however, for the reaction-proc—
gesses to take place, the heat given out being expended.
in heating the fresh cool gas ahead of the flame front
to a high temperature. Due to the fact that the gas on
one e6ide of the zone consists of the products of reaction
and on the other side of the initial substances energetic
diffusion processes will take place in this zone. These
in sum are the phenomena that occur in the flame front,
OQur problem is, on the basis of o study of these phenomena,
to obtain quantitative expressions for the speed of com-
bustion of the substances in the flame front.

Due to the fact that the zone within which the com~
bustion takes place is very thin, external, artificially.
prcduced turbulence and even the motion of the gas arising
from the combustion process, will lead only to a curvature
of the surface of the flame front and an increase in its
arca but will not disturd the structure of the zone itself,
(They will nost, for example, complicate the processes of
diffusion and heat transfer in the zone,) Thus any kind
of motion 2r turbulence in the gas only increases the
area of the flame fromt but does not change the charac-
teristics of any elemont of the front area. Particularly,
on a unit area of the flame front of a given mixture the
same quantity of fuel per second vy will always be burned.
Therecfore the total quantity of fuel burned per second over
the entire flame front area § will be wvpS. Any curvature
of the flame front due to gas flows or turbulence will
therefore increasc the total guantity of burned fuel in
propoftion to the increase in the flame front area S,
There thus enters in the theory of .combustion for each
given mixture a certain constant, namely, the mass rate of
combustion vy egual to the number of grams of mixture

burned per second per unit area of the flame front.

In burning a definite quantity. of.fuel. per. second, -

"“the flame front is displaced with respect to the initial

gas as fresh quantities of the latter are consumed by the
flame. It is not d4ifficult to establish a relation between
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the mass rate of combustion and the lirear velocity of
the displacement of the flame front. In order to secure
- the combustion of vpdS grams of the mixture it is
necessary that this quantity of the mixture be brought
up to -the element d§ of the flame front either by
displacement of the flame front or by having fresh gas
supplied to the stationary flame front. For this pur-
pose the linear velocity of displacement of a given
element of the flame front with respect to the unburned
gas in the direction normal to the flame front surface
at a given position should be equal to vg = vp/p, where
o is the density of the initial cold gas. This linear
velocity v, . 1is denoted as the "normal voclocity of flame
propagation.* It is a characteristic constant for the
combustion process of every mixture and does not depend
on the hydrodynamic conditions under which the combustion
occurs. '

If the flame front in a tube were plane (or a sphere
normal to the axis of the tube) the displacement velocity
of the flame front (with ignition at the open end of the
tube) would exactly be equal to the normal speed of prop-
agation. Actually the burned gases on expanding flow
out through the open end of the tube into the atmosphere
according to the law of laminar flow (thet is, with veloc-
ities varying with the distance from the wall)., At the
wall itself the flow velocity of the burned gases is equal
to zero. It can rcadily be shown that the burning gases
a2t the flame front cdges should flow at an angle to the
latter. A detailed though qualitative analysis of the
hydrodynamics of the flow of the gases in this case (see
Jost referecnce 1) leads to the conclusion thet the plane
front is unstable and that the fronft should assume a
curvature., The gtable form will be thet of & cap which
bulges in the direction of motion of the flame. On figure
2 is shown a number of instantaneous flame-front photo-
graphs separated by equal time intervals, the front being
propagated in a vertical tube (d = 5 cm, mixture of 58
perccnt CO =and 42 percent =2ir, pictures dy Barsky).

For flame propagation in a horizontal tube (if the latter

is not too narrow) there will nlso be a convexity due

to gravity which makes the front unsymmetrical with

rospect to t he tube axis (fige. 3). As long as there

is no change in the hydrodynamic conditions the shape of the

*Denotéed as transformetion velocity in NACA reports.
(Translator’s note.)
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flame front will remain -constant, hence also the quantity
vmS . of gas burned per second and also the velocity ‘of. .
displacement of the flame front as a whole., This veloc-
ity 'vopg will evidently be equal to va/nrzpo* where
r 1is the radius' of the tube and § ‘as.before the total "

'flame-front area, whence v uq = V4 §/mr2, that is, the

ratio of the obsérved véloclty of propagation in a cer-~

-tain tube to -the normal velocity is as.the area of the .

flame front to that of the tube, Tests show, in fact, that
for -a distance 0.5 - 1 meter (depending on the total length
of the tube) the velocity of propagatlon ‘of the fllame in the
tube remains constant, This is seen from figures 2, 3, and
4, which -shows a photOgraph of the flame proPagatlon obtained
on a rotating film. (If = is the linear speed of motion
of the film tan o = vobs/w.)' The constancy of the angle

¢, that is, the: rectilinear trace of the flame indicates

the constancy of the propagation velocity. By both of

these photography methods the value of the observed veloc-
ity of propagation can be obtained. . .

TABLE I
Velocity of flame propagation in 10-percent mixtures of

methane with air in tubes of various diameters and com-—
putation of the normal velocity of propagation

i
mwirrimen

Diameter|{ Direction Observed velocity | Area of normal
of tube of flame of propagation - flame velocity
Co propagation o front

(cm) ‘ {cm/sec) (cm?®) (em/sec) "
10 Horizontal 111 300 : 29

10 —=—eDO~ = . 71 189 29

b [T R e 92 = . .66 27

5 . ——m=d O ——— 61,5 © 48.5 | 25

2.5 @O ——— 71L.5 s 12.6 | 28
2.5 a0 .63 . 11,0 | 28

2.5 ——=—d0=m—m- 59 B - 10.4 | - 28
2.5 vertical .. B8 .. S .48 - .28

up ' . o . S ,
. 2.5 same 92.5 . .. 66,5 .27
2.5 vertical. .61 46 - 26
. down - : '
P “game  |UTTTUUBR T | s3.s 26

*For a displacement of the.flame front with velocity <vobs,

the quantity of substance consumed in the flame front per
section is vgopg po mr® grams. ~ On the other hand at the
flame front area S there burn each second vpS grams

whence Vopg po TIT = vpS = v,p,S.
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The .first method has the advantage that, besides per- -
mitting the computation of the flame~front area S, it
also permits the computation by the above formulas of the
normal velocity of propagation v« The results of the
computation are given in table I,

WHe seo that for tubes of different diameters for
various shapes of the flame front and various observed
velocities of the flame propagation the computation
actually gives a constant (within the limits of obser-
vation errors) normal velocity of propagation.®

We have already shown that the uniform flame prop-
agation in a tube is observed only at the start of the
process over the first meter of the flame path, There-
after the flame propagation, for reasons not yet under-—
stood, presents a nonuniform character., The flame.at-
times begins to move ahead with a very large velocitys
at times the velocity dcecrcases and cven reverses its
dircetion. ~ that is, a kind of oscillation begins to
take place. This is. clearly brought ouit, for example,
in figure 23 {reference 9). It is also seen in figure
3 where the regular flame front, after traveling 50
centimeters along the tube, disappears suddenly and the
pilcture becomes confused owing to the energetic flame
oscillations, Sometimes the latter attains a very large
amplitude as is seen in figure 5 (reference 9). In many
cases there occurs another type of disturbance of the
regularity of flame preopagation in the tube as shown in
.figure 6, giving an example of the acccleration of the
flamo propagation and the occurrcence of a detonation wave
(taken on a rotating film, stoichiomctric mixture of
methanc, photograph by Sokolik (reference 9)). As may be
seen, the flame travels slowly at first with a constant
velocity, then the velocity begins to inerease gradually
and finally at the distance § from the point of igni-.
tion the flamec propagation enters a new regime charac—
terized by detonation.

*In wide horizontal tubes the convection in the direction
of gravity disturbs the correct shape of the flame front,
producing in it all kinds of nodes and breaks, a condition
which renders impossible the measurement of the normal
velocity of propagation, The lower photograph (fig. 12)
of the article by Sokolik (reference 9) 1s an example

of this type of flame propagation. '
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The detonating combustion (like the normal one)

‘progresses at a constant rate with the difference, how-~
“ever, that the detonating velocity exceeds the normal

combustion rate hundreds and thousands of times. Det-"~
onation does not arise in every mixture but only in v
mixtures with a sufficiently large amount of heat liber-

ation., The normal propagation is associated with flame

propagation through heat conductivity,the flame front
heating tle neighboring cool layers of fresh gas to a

high temperature, insuring a high reaction velocitys
whereas in the detonating regime, the flame propagation
ocecurs with the aid of the hydrodynamic shock wave.

Over this wave front there is a sudden compression of the
unburned gas to a very high pressure. As a result of
adiabatic compression the temperature of the gas sharply
rigses and the mixture reacts suddealy. In our present
paper we shall not consider these interesting phenomena
which are important both from a theoretical and practical
point of view., We shall only touch upon the problems of
the fluctuating type of propagation which often arises

to disturd the regularity of the normal propagation.

There sometimes occur cases where the amplitude of these
fluctuations is not large. In these cases, notwithstand-
ing the presence of fluctuations, the average in time of
the propagation velocity maintains the same value as the
velocity of uniform propagation that occurs at the start
of the process. According to Jost this mey be ccnsidered
as proof of the fact that for small fluctuations the flame
front remains stable and maintains its shape. BRelative to
the unburned gas the flame is propagated with the same
constant velocity. The reason for the apparent irregular-
ity of motion of the flame with reference to the observer
appears to be the oscillation of the gas column in the
tube as a whole., These oscillations originate from cer-
tain unexplained hydrodynamic causes connected with the
motions of the gases during the flame propagation. Small
flame oscillations can be made out on figure 2 (successive
flame fronts compressed, then rarlfled)

In those cases where the amplitude of the oscillation
becomes large this oscillatory motion of the gas, by
changing the distribution of the flow velocity over the
tube cross section, leads in turn to a curvature of the
flame front, increasing its area: and ‘thus also the mean
rate of combustion.

Flame acceleration preceding detonation, as Shelkin
has shown, also appears as a result of the progressive
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increase in area of the flame front and is not associated
with any increase in the normal velocity. He showed that
this acceleration is observed in the case where the gas
motions, arising from the combustion, have a velocity
exceeding the ecritical Reynolds velocity, that is, where
turbulence may arise leading to an increase in the area
of the combustion front and hence to an increase in the
observed velocity of propagation. If the latter is so
small that the critical velocity of the gas flow is not
reached no detonation arises. If the normal velocity

is sufficiently large nonsimultaneous turbulent motions
may arisc in a smooth tube and gradually increase. For
this reason observe at first constant normal velocity

of propagation and only after the flame has traversed a .
more or less long portion of the tube does ncceleration
of the flame with detonatldn arise. The correctiness of
these views was demonstrated directly by Shelkin by
observing the flame propagation in a tube with roughened
walls (to obtain which he placed a wire spiral inside the
tube). The turbulent motions were then expscted to arise
considerably earlier and this was actually found to be
the case, the detonation being found to arise in the
immediate neighborhood of the ignition source at a dis-
tance of a few centimeters of flame travel; that is, the
distance from the source of ignition to the detonating
point was shortened more than ten times as compared with
a smooth tube.

We thus see that every kind of disturbance in the
observed vslocity of propagation of the flame is connected
either with fluctuation of the gas column or with an in-
crcase in the area of the combustion front due to hydro-
dynamic causes, (for laminar flows by a change in the
shape of the flame front and for turbulent flows by an
overlaying of the flame front surface by sort of small
ripples). The normal velocity of propagation remains,
however, constant for all these regimes and detonation
appears principally by the new type of the flame prop-
agation.

There are, however, more dircct methods of deter-
mining the velocity of flame propagation under conditions
where the hydrodynamic state of motion of the gas is
considerably simpler than for flame propagation along a
tube., In the case of flame propagation in a spherical -
vessel with ignition at the center the entire arrangement
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is symmetrical so that only radial flows are possiblé

.and there is no reason for the spherical curvature of .

5.

the flame front.

. Radial flow arises from the condition that the gas
burning at the flame front (thus enclosed within the
flame sphere) has a combustion temperature many times
exXxceeding the temperature of the unburned gas and hence
occupies a large volume. This forms a radial flow of
unburned gas ahead of the flame front, the velocity of
which, compounded with the normal propagation velocity
(relative to the unburned gas) leads to an observed

velocity Vobs considerably in excess of Voo In the

case where, for the spherical vessel a soap bubble is
employed which expands with expansion of the gas, the
process of combustion can be carried out at constant
pressure and the computation of the observed velocity
Vobg &8 & function of the normal velocity vy, con-

siderably simplified.

Assuming, provisionally, an elesment of the flame
front of unit area as stationary, we know that v, = v, po
grams of unburned gas per second flows up to it, hence
the same amount of burned gas is removed. If the density
of the burned gas at the temperature of combustion is p,
the velocity of the burned gas v multiplied by
should, according to the law of conservation of matter,
be equal to vp = vg pos whence v, p, = Vp Or V = Vop./o,
Vo = Vpfpge But the velocity v with which the buraned
gas moves relative to the flame front is equal to the
velocity of the flame front relative to the burned gas,
and since the burned gas under the test conditions is

stationary relative to the obgerver, v = Vobs is the

obsefved flame propagafion velocity. It may be measured
by the two above-mentioned photographic methods, namely:

(1) Dby a series of successive instantancous pictures;

(2) by photOgraphing_the’flamc motion (expansion of
the flame sphere) on a rotating film. (See fig. 16 of the

above~mentioned article by Sokolik (reference 9) in which

the soap buble at the beglnnlng and end of the process is

inalcated schematlcally)

Thus,-know1ng ' Vobg» We obtain. the normal velocity
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Vobs P To = T P

v = e = .V .5 — Yo ——

) ‘ obs obs... 3
P - - T, Ty

where T, 1is the initial temperature_of the gas and Ty

the combustion temperature, that is, the temperature of

the burned gases, Since according to the Gay-Lussac law
the volume: v = 4/3.mr® (at constant pressure) is directly
proportional to the absolute temperature T the ratio

?,/T, - will be equal to the ratio r,°/r,® where r, is

the initial radius of the bubbdle and r; the radius of
the bubble when all the gas in it is burneds (This radius
can readily .be found from the photograph,) '

We thus obtain an elegant and very clear method from
the theoretical point of view for the measurement of the
normal velocity of propagation. If we operate with closed
tubes or solid closed spherical vessels then as z result
of the expansion of the gases during combustion, the
pressure as the flame travels, will increase. Since the
propagation velocity may depend on the pressure and since
the hydrodynamic computation is, in this case, complicated,
the method of measuring the normal velocity under these
conditions is very difficult. By employing long tubes
or large spherical vessels, however, and restricting the
measurement to the initial phase of the flame propagation
(when the rise in pressure is not large) we may success-
fully apply to -the analysis of the results all the con-
siderations and formulas which were obtained by us for
tubes open at one end and for a soap bubble. .

The simplest method of all for measuring the normal
velocity is by means of the Bunsen burner, that is, the
method of the stationary flame. Its disadvantage appears
to be only the large expenditure of combustible gas. If
the flame front in the tube were plane and hence propa-
gated with the normal velocity v we might, by blowing
gas with velocity v, toward the flame, bring the flame
to rest and thus obtain a stationary flame in the gas
stream., The position of the flame, however, would not
be stable because small fluctuations in the velocity of
the stream would throw the flame forward or backward
depending on whether the velocity of the stream was smaller
or greater than v . If, in the axis of the tube, we
place a peint ignitiorn sourcee in the form . of a hot point
or spark it is possible to increase the velocity of the

stream considerably above v, and maintain a stable flame.
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" The flame front will then be -in the shape of a cone
spreading in the direction of the flow, its vertex
situated at the point of ignition and its base on the
walls of the tube, The greater the velocity of the .
stream v the more extended is the cone, The cone"
angle, the angle between the axis (or the velocity of
‘the stream) and the slant side, is such that Vo = Vv sin @.
It is readily seen that the quantity of the gas supplied
by the stream to a unit area of the combustion cone will
be equal to pg, v sin @ = p, v, and this magnitude should,

as we know, be equal to the mass rate of combustion Vm

V, Poe+ From this it is clear that the velocity of the

stream may be considerably greater than v, without caus-

ing a break in the flame., If the ignition source is taken

to be not a point on the axis but a heated wire ring placed

against the walls of the tube it will then be found with-
out difficulty that the shape of the front should again be
a cone having its base on the ignition ring., 3Both cases
are sketched omn figure 7, '

Tests, such as those described above, are much more
easily and simply carried out with a Bunsen burner. At
the rim of the burner stagnation points of the flow are
formed where the velocity of the flow is small and there-
fore when the burner is lighted these points play the
part of the constant ignition source. The gas stream
escaping from the burner (the burner usually operated
with laminar flow) moves for a considerable distance in
the form of a eylindrical column with the same velocity
v that prevails within the burner tube. The conditions
are thus obtained for the formation of a stationary
conical flames front. Xnowing the amount of fuel gas
supplied and the cross-sectibnal area of the burner we
determine the velocity v and from the cone angle ©
find the normal velocity of propagation v, = v sin o.

It is simpler to measure not the angle . ¢ bdut the height
h of the cone, The angle ¢ .is then obtained from the
equation tan ¢ = r/h (fig. 8).°

The simple conical shape is obtained in the case
where the velocity of the gas flow is uniform over the
entire tube cross section., " Actually with laminar flow
of the gas along the tube the velocity distribution is
parabolic, being a maximum at the center and falling off -
toward the walls of the tube. It will readily be seen
that under these conditions the stationary flame front
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will differ somewhat from the simple cone and will assume
the cap shape shown in figure 9, fThis is, in fact, the

shape assumed by the inner cone of & Bunsen burner, For ,
this reason the measurement of the normal velocity, accord~
ing to the previously given formulas from the height of the
cone, involves a certain error, The more accurate method

is therefore to photograph the cone and determine its arca

S from the photographs. Knowing the combustion area and

the volume of gas per second V supplied to the dburner

the normal velocity is easily found from the formula

v, = V/s. |

In determining the propagation velocity by the
Bunsen cone method it is often more convenient to make
use of the arrangement with separated cones.

The greatest number of mecasurements of the normal
velocity refers to air and oxygen mixtures of carbon
nmonoxide, hydrogen, methane or technical combustible
gases of the type of illuminating gas, Less study has
been devoted to the flames of the higher hydrocarbons.,
The experimental data thus almost exclusively refers
to oxidizing reactions with free oxygen which for
practical purposes are of most interest. The processes
with other two-component systems (for example, combustion
of hydrogen with chlorine and organic. substances) and
also with one-component systems, that is, the cases of
flame propagation with exothermic decomposition of the
gaseous substances, have recelved almost no study (except
for the case of flame propagation in ozone).

For two-component systems it is of great interest
to establish the dependence of the normal velocity of
propagation on the percent of combustidble gas (€0, Hp,
CHs) for various ratios of the oxygen to the inert gas.
On figures 10, 11, 12, 13 are shown the corresponding
curves for the mixtures €O, H; and CHy. The propa-
gation velocity for CO and H, reaches a maximum, not
for the stoichiometric ratios of t he components but for
a marked excess of the combustible, Dilution of the
mixture with inert gas lgwers the velocity of propa-
gation of the flame, (see figs. 11 and 12), a fact
which is to be expected because the maximum temperaturse
of combustion is thereby reduced. The greater the heat
capacity of the inert gas the more the combustion temper-
ature is lowered and the more the flame propagation veloc-
ity reduced. Thus, if the mixture of methane and air is
first diluted with carbon dioxide and then with argon the
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flame propagation velocity in the flrst case 1is about .
half that in. the. second case.. :

Prellmlnary hbating of the m:xture increases the

velocity of flame propagation. On figure 14 are shown
the results of Passauer. for air mixtures of carbon
monoxide containing 2.3 percent water vapor. The flame
propagation in mixtures of carbon monoxide depends to
a surprising extent on the water vapor content. The
propagation veloecity increases with increase in the
rercent moisture. This is shown in figure 15 according
to the data of Fiock and King., An addition of hydrogen
and other substances containing hydrogen has the same
effect. A mixture of carbon monoxide with air, or even
oxygen that is perfectly dry and without hydrogen-con-
taining substances, is altogether unsuitable for the
flame propagation, that is, is not a combustion mixture.
If certain substances, having a tendency to take up
moisture, as for example, CCla, are added to a mixture
of moist (€O +they strongly reduce the velocity of the
flame propagation. These substances produce, however,
the same action on the propagation velocity of hydrogen
flames where the addition of moisture naturally has no
effect.

The problem of the variation of the propagation
velocity with pressure has experimentally not been clarie.
fied, the results of different authors being in sharp
contradiction. Moreover, in tests with CO mixtures
where the propagation velocity strongly depends on the
amount of moisture, different results are naturally ob-
tained depending on whether the tests are conducted at
constant partial pressure of thc vapor or at constant
percent moisture. The latter case is of theorestical
interest but in practice the first one is generally used.
On analyzing +the data of Ubbelohde, Zeldovich came to the
conclusion that at constant percent moisture the mormal
propagation velocity of €O air mixtures does not depend
on the pressure of the mixture. In CO0 oxygen mixtures
the propagation velocity increases somewhat with the.
pressure, approximately, according to the law Vo 4~/51

In mixtures of hydrogen with air, benzol and benzene the

“the propagation velocity apparently does not depend on

the pressure. In methane mixtures the velocity drops

with the pressure approximately as l/ P. All that can
be affirmed w1th this state of experimentation is that
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the velocity of the normal flame propagation in oxidizing
reactions varies with the pressure according to the law

Vo ® p" where n lies between O and'—l/2. The corre~

spondingmass rate of combustion Vm T Vo p increases with

m

the pressure according to the law 1p where m lies

between 1 and + 1/2., Only in oxygen mixtures where the
temperature of combustion is very high is there observed
a slight increase in the propagastion velocity v, with

the pressure and a corresponding increase in the mass
rate of combustion Vo with the pressure to a power some-

what higher than one.

2, ANALYSIS OF THE OLD TEEORETICAL VIEWS

ON FLAME PROPAGATIONW

We have seen that the phenomena of slow flame pro-
pagation all lead to the property of the flame front;
namely, of a definite quantity vy grams of mixture

burned per unit area of surface or, what amounts to the
same thing, of being propagated relative to the nonburning
gas in.a direction normal to its surface with a propagation

velocity v, cm/sec. The observed motion of the flame is

the result of the superposition of 211 kinds of hydro-
dynamic motions upon this fundamental motion of the flame
front, Thus, the theory of slow flame-front propagation
is the theory of processes occurring in a thin combus-~
tion layer in the flame front. Since the curvature of
the surface of the flame front is always. small in com~ -
parison with the thickness of the front (that is, the
zone of reaction) we may with sufficient accuracy con-
sider that all magnitudes (for example, temperature)
within this zone are functions of a single coordinate,
the direction of which is perpendicular to the element

of front area (one-dimensional problem). Moereover, by
assoclating the origin of coordinates with the flame
front, that is, by studying the process in a system of
coordinates moving in space with a given element of the
flame front we may assume that the distribution within
the combustion and heating zone of all magnitudes of
interest (for example, the temperature) does not change
with time. The proplem thus resolves itself to the solu-
tion ©f the one-dimensional stationary case.
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For the computatlono below,thevfollowing notation

vﬂw1ll be used:

'TO, T Ty
8
ao' a
n, n,
A
*
7\1
°p
N
cpc
,H’ HO’ Hl
. po’ P
P*

~density of the gas at temperatures

respectlvely the 1nitial temperature of
the unburned gas, the variable temperature
in the process of combustion at various
. "points of the flame zone, and the maximum
combustion temperature without taking heat
losses into account. All temperatures are
.expressed.in degrees on the absolute scale.
the difference T, - T
the number of molccules per unit volume of
the combustible in the initial cold mix=-
ture and at various points of the combustion
gone, respectively, in the case where a
decomposition reaction occurs (61,0, O,,
explosive substance)
total number of moleculecs in the initial mix-
ture at temperatures T and T,s respectively

-coefficient of heat coanductivity of the gas. A

increases with the temperaturec

coefficlent of the heat conductivity of the
products of combustion at temperature T,

specific heat of the gas at constant pressurec.
Cp increases with the temperature. At first

we shall assume cy independent of the

temperature and equal to its average value
between To and T1

specific heat of the products of combustion at
the temperature T,

heat contents of unit mass of. the gas corre-
sponding to temperatures T, TQ, Ty

To;and 7,
respcctlvelg .

density of the products of combustlon at
temperature T,
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v_ o normal velocity of flame propagation in centi- -
meters per second, that is, the velocity of
motion of the flame front relative to the un-
burned gas along the normal to the fromt sur-
face at a given place (or, what amounts to
the same thing, the component along the normal
to the front of the velocity of motion of the
cold gas relative to the flame front)

v the velocity of the gas relative to the flame
within t he combustion zone at temperature T

v the mass rate of combustion, that is, the number
of grams of the gas mixture burned per 1 cm® of
the flame front

D, Dy the coefficients of diffusion of the gases ab
- temperature T and To,respectively

the fraction of the weight of the comdbustible in
the initial mixture or equivalently the number
of grams of combustible per gram of the mixture.
In the case of two-component systems, for example,
for oxidizing reactions M, will be the fraction
of the fuel that oxidizes in the process of com-
bustion. M, 1is always < 1

M the fraction of combustible per gram of the mix-
ture at various points of the combustion zone
<1

B

¥

N the Avogadro number = 6X10%% molecules

Q! the heat of reaction of a single molecule of the
combustible and in the case of two-component
systems, for example, the oxidation of CO +to
COs5, the heat of oxidation of (€O referred to
one molecule of (O

Q the heat of combustion of 1 gram-molecule of com-
bustible (the hest of decomposition of 1 gram-
molecule Cl,0, the heat of combustion of 1
gram-molecule of CO etc.)

L the heat of combustion of 1 gram of the initial
mixture (for the combustion of a single or two-
component system diluted with an inert gass L
refers to 1 gram of the entire mixturc including
the inert gas
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w the speed of reaction expressed by the number of
reacting molecules of the combusitible per unit
~.volume. per. second.. ..For the reactions of zero,

. -E/R -E/RT
first and second order w = Se E/RT, w = kae /P
- R m .
and w = ka®e /", respectively
B énergy.of activation of the reaction
R gas constant
" molecular weight of the combustible
Z impact coefficient, that is, the number of .impacts
Per unit time per unit volume between two mole-
cules if the unit volume contained just these
two molecules
1 free path between impacts
u velocity of the heat motion of the molecules
o} effective diameter of the molecules on impact
m mass of a molecule of the mixture
™ nean mass of a molecule of the mixture
The following simple relations between the above
ragnitudes will be required for what follows:
-
. aghs p To- MoQ MoQ'M MoQ!
W = e ee— = el T, = = =
Mopo T} g p ¢ D m " m
a 1
- 208 = Hy - Hgs; Q = NQ?
Po
For constant specific heat I = cp (Tl - Tq)
T =0
‘ . . o iea . o . — .
FTor var1ab1§ specific heat H cp 4T; EH, “/pcp di!\ (L)
T 0 0
' . am 1 1
Hy = / °p OTi op = gpi D =g twi A= g lupeps
&
1 -1
Z =,/2moRw; 1 = T
/2 Jeno2un  Zn
a
== = M; 2% = My; Nm o= p; oam = p
p Po
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Finally we present various pecssible definitions of
the fuel concentration and the temperature in the com=-

bugticon zone.

1. a
per unit volume at diffsrent
zOona. This is the

o :E-:C

¥ n
is,

the number of mclecules of the combuctible

points of the combustion

concentration we shall mainly use.

relative molecular concentration, that

the fraction of the molecules of the combustible in

the mixture at various points of the combustion zone.

2 - . .
% x 100 percent relative concentration.

3 . M

the welight concentraticn of the

combustible

during combustion (if the molecular wecights of all the

gases craposing the mixture and of their products

combustion are approximately
¥ = a/n=2C), B=MNU, the
ticn of the combustible. If
all the gases in mixture are

4, T
the combu

abscluts

the
stion zone.

of

6.

In the flame front
zone the temperature rises £

of the
To

temperature

rise in temperature above the

- T,) relative rise

within the heating

of
squal to5 each other
relative welght concentra-—
the nolecular weights of
the same then

~
o

Co

at various points

initial.

in tem-—

reaction

and

rom the initial temperature
cold gas to the temperature

T,, the maximun

combustion temperature measured in thousands of degrees.

Considering the temperature distribution within the

combustion and heating zones it

is not difficult to arrive

at the following differential equation

4 AN dE _
dx ¢ dx o

Y

4E
dx

+ WQ,' = 0 (l)
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Inwthewgasg;where,25/cp-”§ay be considered a constant

magnitude within the temperature range T, to Ty (that
is, in an interval of the order of 1500%~ 2500°9) the

~equation may be written in the form

A d%E a3
— - v, == 4+ wQt = 0 (1)
cp ax® B ogx ¢

Assuming ¢ constant within the range T, to T, we

p
arrive at the equation

pg
a2m ar w%f*“ -
- — + = 0 2
dx® dx (2)
where .
Vpe
o = —t
A
then we shall derive this equation. When in the gaseous

phase heat is evolved and the heat is transferred from
some points of space to ovthers then {(=sven in the abscnce
of forced motion and convection under the action of
gravitational forces), there must occur a process of
transfer of individuzal elements of the gas as a result
of the heat expansion. Thus even in this case, and

all the more im the general case, to the heat conduc-
tivity must bpe added heat transfer arising from the

gas motion. ¥We shall denote the linear velocity of

the latter by VvV (e vector which varies in direction
and magnitude at different points of the space occupied
by the gas). In this case the flow of heat per unit
time through an area of 1 cm? perpendicular to the
direction of V will be pHV where pH 1s the heat
content of a unit volume of the gas. Moreover heat

will be transferred by the heat conductivity, the amount
being, as 1s known, A grad T. The total heat will be

‘equal to

>
Q= - A grad T + pHV

If the reaction proceeds with velocity w then
each second wQ' cal of heat energy are given out per
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unit volume. Hence the change in heat content per
uiit volume per unit time 3 (pH) ot  will be equal to

) > :
9(eH) . _ qivg + wqt=divhgrad T~ div (pHV) + wQ!

ot

or making use of the equation of the conservation of
matter

- 22 _ 43
53 div (pV)

and of the mathematical relations

-a-é-;fﬂl = p-_d—fc*f+ Hg-% and div (pHV) = E div (oV) + p¥V grad H

we may rewrite the equation of heat distribution in the
form

el

3 .
p 5T = div A grad T-pV grad HE+ wQ'

Using the relations dp = 3E/3T and Cp grad T= grad g*

*¥strictly speaking this 'is not sc because in the case of
chemical reaction where the composition of the mixture varies
in time and space the heat contsnt H varies not anly with
the temperature but with change in M. If ¢4 and c, are
the specific heats at constant pressure of the initial sub-
stances and final products,regpectively, then

m
r ] 3\ 3T /3E\ ¢
(- Ha= | ( - : 9_H_<~'~ T  (9E\ oM,
H Ho J LCIM+ (l M)Cej aT Or.a = / a \a / axl
HTO N ' ...
%w = cp = Moy + (1-M) cgj ;) cl—cz) am
b
T

Prom what follows we shall see that un%er the flame con-
ditions

of . _l___..__..-.‘T = To _a_I‘_d.

3x Mo aX )
where Tq is the maximum temperature developed in com-
bustion, whence (Footnote continued on page 21)
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we may write

div A grad T = divFgL grad H
Y

and renrite'the*fundamental equation in the form

p éﬁ = div A grad H - p V grad H + wqQ!
8t Sy

* (Footnote continued from page 20)

——

(2mY &, (am) ar .
¢ ox 3T4 ox

Mo [ (e, - cp)ar
T Yo {em = )(r 7))
(T, = Ty) Cy Ty~ To cp

where ¢, and ¢, are the mean values of the specific
heats in the temperature range T, to T, Chemical trans-
formation, as we shall see below, only procseds at high
temperatures for which the difference Cy — Cy is slways
small., It is not difficult to prove from tabulated data
that even at temperatures of some hundreds of degrees the
¢ifference ¢y = c; for the majority of cases of interest
to us is less than 10 percent of the value of cpe The

- m
magnitude = lO,Mo is always less than unity. We may,
..1"' [e]
therefore, neglect the term g; oM in the expression for
ox -
%% and consider that-%% = s%%/M-gg = cp-gg or, generale
ized, Cp srad T =-grad H as was to be proved. For the
same reason the heat Q' or @ given off by the chemical

. $ransformation is constant, not depending on_ the tempera-—

ture, at which t he transformatlon occurs.

We have, in fact.

Qp = Qp +u [ (c3 = cp) dt = qp
o ‘ 0
.TO -
in the case where is sufficiently large as is
always true in combusglon reactions.
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or in the one-dimensional case where all the magnitudes
depend on a single coordinate x and the velocity vector
forms with the =x-axis an angle ¢ (for example, V grad
H =V cos o JH/dx)

9H_ 8 A OH oH
p-:gg—*g;-;gg;- pV cosqp -5-;+WQ,' .(21)

In applying to the flame zone where as we have seen the
problem reduces to the one-~dimensional and stationary case
(3E/at = O) and where oV cos @ is no other than the
weight of the burning gas mixture per second per unit area
of the flame front, that is, pV cos o = v, we obtain the
equation given above.

Previous to the work of Lewis and von Elbe (refercnce
2) and Zeldovieh and Frank-EKamenctsky, partly due to
insufficient understanding of the process, partly for the
sake of mathematical simplification of the procblem, every
author introduced into the theory a certain constant,
namely, the self-ignition tempersture of the given mixture,
It was supposed that the fresh gos, on approaching the
combustion gzone was heated up by the heat given up by the
latter to the self~ignition temperature T3 after whiéh

the inflammation took place, that is, an intense reaction
at a constant rate w was initiated in the mixture until
21l the substance was consumed znd the maximum tempera-
ture attained., As we have already seen above(see sec.

1) the self-ignition temperature is not a constant but
depends on the test conditions, chiefly on the conditions
under which heat is liberated and on the induction period
of the zone of inflammation. Moreover, the assumption

of a constant speced of reaction.on increasing the temper-
ature from T3 to T, likewise dnes nct bear criticism,
For this reason the introduction of the concept of self-
ignition temperature in the problem of the velocity of
flame propagation is very reminiscent of the views with
regard to the M"reaction point" in the self-ignition theory
prevalent before van't Hoff.

W2 shall try, holding to the premises of the previous
authors, to present these o0ld theories in their strictest
and most logical form without following, in too much de-
-tail, the often confused and not always correct concepts
which they employed. We stop to consider these old theories
based on doubtful premises not only because, until now,
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. they have been used by scientists and technicians, but

also because their clarification will 'be of valuse in
presenting, in the next section, the new more rigorous

-thermal theory of flame propagation, the principles of

which are explained in the paper by Zeldovich and Frank-
Kamenetsky (reference 3). For the solution of the prob-
lem we shall make use of eguation (2).

Starting from the above naive assumptions we are
to formulate the boundary conditions under which equation
(2) is to be integrated. We shall lay off the temperature
of the gas on the coordinate axis and on the axis of ab-
scissas the distance x from that point in the zone at
which the inflammation temperature Ty is attained (fig.
16), The =x =axis is directed from the cold initial gas
tb the products of combustion. In our assumed system of
coordinates moving with the flame front the latter is
stationary and the fresh gas moves along the x-axis with
the velocity v, toward the flame front. At X = ~o
the cold gas has the initial temperature T_.. Then in
the heating zone and moving in the direction of positive

x the gas is heated by conduction up te the temperature

T. (region I). The gas then starts to react and continues
t0 be heated up (region II). After traversing the distance
d from the origin of coordinates the weight of the initial
gas has completed its reaction and the temperature attains
the maximum combustion temperature T, which in the absence
of heat losses remains constant further along (regicn III).

As we have already shown, the reaction velocity w
at the self-ignition temperature and above has tacitly or
explicitly been assumed constant by the previous authors.
It is immaterial whether to0 assume as constant the number
of transformed molecules w per unit volume per unit time
independent of the gas density which varies as the gas is
heated or the time taken to transform each given molecule,
that is, to consider w/p = constant or w ©proportional
to p (which changes with the heating). The second
assumption leads in the final expression for the propa-
gation velocity to a value less than the first in the
ratio 1: M/T07T13 that is, approximately

The first assumption is equivalent to a reaction of zero
order, the second to one of first order with respect to the
density or pressure. As we shall see below, for a reaction
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of the first order it is necessary to take into account
the. diffusion in the zome as was not done in the older
theories. Only for this reason, in fact, is the assumption
of zero order of the reaction in the older theories de-
void of inner contradictions and we shall, therefore,

stop to consider it.

Let us consider the motion of a small element of
volume dw, of the initial cold gas at temperature T,
containing a,dw, molecules of combustible capabdble of

chemical transformation., This element of volume gradually
heats up as it moves from X = - o in the direction of
positive x the volume of the element increasing due to
heat expansion so that at a certain distance x and at

a corresponding temperature T the volume of the element
will be

T
dw = — dw
7, Yo

For T > T. a chemical reaction in the elemsnt of volume
dw will take place with velocity wdw, where w Dby '
assumptiorn is a constant magnitude. In the interval dx
between x and x + dx the element of volume remains

a certain time 4t evidently equal to dx/v where v

is the velocity of motion of the volume element at the
given point. If the cold gas moves with velocity v,
then on increasing the temperature the gas due to ex-
pansion will move more rapidly, namely, with velocity

v = L
(o)

so that dt = dxf/vy x T /T

The number of reacting molecules in the element
dx 1is evidently equal to

: dx To w
w dw dt = w dW — — = — d4x aw
. ‘vo Tl Vo (3]

that is, in each element dx the same number of mole-
cules will react. Therefore, the total number of reacting
molecules in the distance between x =0 and x = 4 of
the volume element will be wd/v, x dw, . But by defini-
tion all molecules a_dw, of the combustible in the
element of volume at‘%he distance & are reacting, whence
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o S
Q¥ = 5 or a = =070 (3)
Vo W

We thus obtain the required value of the distance d.

, In integrating equation (2) we divide the integrating
range into two subintervals, In the first one where the

temperature rises from T = T, to T = T3 and =x varies
from = o $0 0 no reaction, according to the assumptlons
made, occurs and hence w = 0, In the second interval

in which T 1increases from T = T. to T = Ty and x

from O to x = 4 he speed of the reaction, by the
assumption made, is constant. In the third region from
Xx=d to + o and w = 0 the temperature is constant
and equal to T; and therefore the solution is obvious,
Thus for region I

2
g~% -adl =0 (4)
dx ‘ dx
whers
for x = - o, T = T; and for x =0, T = T, (5)
In region II
d=q AT wQ!'
- g -+ —0— = 0 ]
ax® dx A CA
where
for x = 0 T = T; and for x =4 T =T, (51)

As may be seen these conditions are gquite sufficient for
the s olution of the problem. Besides these, however,
there is another condition, namely, the condition of.

dT

continuity of the heat flow g = - )\ == vwhere the two

regions meet, that is, the condition

(dx x=0,1 <dx x=0,1I1
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This added condition determines the value of the param-

sher Vo OT Vi, that &s, the normal velocity of the
" flame propagation. Wy find the equation for the deter-
mination of vy or v, = vp/p to be

‘TI-TO- E (6)
where
¢ B 4= VmCpd _ 2o Voot _ Vo PolpT
S ed =R w A A (61)

and the magnitude ao/w ig denoted by T.

We shall show how the solution is found. . Accorde
ing to formulas (4A) and (3)

wQ' wln vpe (T; - T.) T, = T4
= = 2 = & —
A MgEA aa a

Substituting the above in equation (4) and integrating
under conditions {(5) we find for regicn I (x from— « to 0)

(T - To)y = (13 = 7)™ (7)

and for region II (x from O to 4)

T, - T ad _ o OX

X o+ (Tl - To) — ""a,"d_"'—"l' (7!)

(T - To)yp = S

FPorming (dT/dx)I and (dT/dx)II for x = 0 and equating

them, we cbtain

Ty - Ty _ a(Ty - Tp)

(73 - T,) =
@ 1 o d ead L

whence we obtain formula .(6).
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When Ty _is near _Tys that is, the self-ignition

temperature is low

This will Be the- case when e“g"is small or ¢ is
large. Then '

_ s A
Ty - 7o £ - ad o pocP
that is,
7
v = LA T, - T .
o /CPPOT T - To (8)
When Ti is near T,, that is, the s

elf~ignition
temperature 1is high, then (Ti—To)/(T1 T,) 1is approxi-
mately 1. This will be the case when £ is small and
e=€ in formula (6) may be developed into a series.
Taking the first three terms of ‘the series, we obtain

. . g2 ‘
5
q'!.i—%:g—.-g--:'l..ﬁ.sz\-f‘i
T, - T, 4 2 2

i

«2d®/6). Thus .

ad =M1 - T4

v = : = — i — .
o} /ipPoT |I|1 - TO POL 30 (Il Tl) (9)
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The formuls

v, = />‘ Ty = T3

which is arrived at by most of the previous authors 1is
an approximation, as is readily shown, of the expression
of the general formula (6) and, generally speaking, not
accurate.

(10)

In what follows we shall be especially interested
in the case where T3 is near the value T,. In this
case formula (9) is applicable. We shalix estimate the
range of application of this formula. We set ¢ =ad=0.5.
2
Then neglecting the term %T = gigé Z 0,04 we make in
comparison with ¢/2 = 0.25 an error of 16 percent in

the determination of the magnitude ?, - T,/T, - T, or

8 srcent in the determination of the velocity v_..
J o)

Thus the formula is applicable with the required

T, - Tj
accuracy up to =L—>=t < 0,35, If T; - T, = 2000°
the formula is applicable up to T3 - T, = 1500° or
m, - Ty = 500°,

In what follows we shall find of importance another
approximate method of solution for the case when T35 is
near T.. This method leads to the same resnlt as formula
{9) and hence gives the same degree of accuracy. It
differs, however, in this respect, that it may with equal
accuracy be applied to cases where the reaction velocity
w 1is not constant but varies, for example, with the
temperature. This method was proposed by Zeldovich and
Frenk-Xamenetsky and is based on the assumption that for
T3y near in value to T3 in equation (4') for region II,
it is possible to neglect the second term and write the
system in the form:

2
a®m

+’o(.~-6:E = 0 (region I) (11)
dx=® ax
-%%% + ﬁ%l = 0 (region II) (111)
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The validity of this will be clear from. a consideration
of the complete equation (41) if there is substituted
in it for the magnitude wQ'!'/A its equal o =3 T2 .

| : o

Integrating the equation with respect to =x from O
to d we obtaln o

@) ), @) - fee s fu
e (T e (- ) |

Since T3 - T3 << Ty ~ P, the first term on the right
side of the eguation may be neglected, which means that
we may neglect the term o dT/dx in equation (4!'), that
is, consider the term o dT/dx small by comparison with
wQ'/A and d42T/dx®,*

The physical significance of neglecting the term
is the following: In region I the coavective heat flow
expressed by the term «(7T;-T,) is directsd toward the
positive x values and the flow due to conductivity,
expressed by the term aT/dx, is oppositively directed,
both flows compensating one another and thus sstablish-
ing a stationary state. At the boundary of the region
the flow of heat by conduction, °"preSSud by the term
(dr/dx) , becomes equal to a(T;~Ty) & oa(T,-Ty), that is,
practically all the heat in the recaction zone is used in
heating the fresh gas. Since the heating in the reaction

zone (from temperature Ty-T, ) is very small the heat

in region II is conducted away without contributing
practlcally to the further heating of the gas (although
the maximum rcaction temperature is there attained).

* It may appear strange here why we may consider the
magnitude o 4T/dx small by comparison with d27/dx®

in region II while in region I these magnitudes are
obvicusly of the same order. This is explained by the -
fact that on the boundary of the region at point =x=0
the second derivative undergoes a discontinuity and for
Ty = T3y << Ty - T, in region II it is much greater than
the second derivative in region I while the first deriv-
ative in region I while the first derivatives in both
regions are of the same order. :
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Hence in this region equation (11t) is approximately
satisfied., '

.Integrating equation (11) there ‘is obtained

4T\ _ AT\ _ (ary _ - vopl
dx)g (dx oo (d_x)o = o (P3=-T,) T o (T, To)_____;\__

since by assumption T3 1is near T,

Integrating equation (11!') there is obtained

: Ty
- (&8) ar) . (Z) - /2y '
<dxd+ dx/g  \dx/ Y JFWd'
Ti

-3

Equating the two expressions obtained for (dT/dx)o, we
have the equatiosn for the determination of a or v, :

Veood _
_—X'_'"J/"R— /“w aT or v, = “lz 2AQ! J/’w ar  (12)
Ny Po .

Ty T3

Writing the above in somewhat different form

v o= ~/27‘\Q.la'0 - 1
0 v/cpzpoz (Tl_To)a

where
Ty
1
I = — w an (13)
ag
Ty
Since
254 Q& pla
a2Q' = = Po S = Po = = pol = Pocp(Ty=Ty)
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- S vo- / o

(14)
Cppo(Terd).;

Thus exPressed the formula 1s appllcable also for w

varying WIth x. If w = eonst then I = ——(T T1)~—L—21

and formula (14) leads to formula. (9) earller obtained by
-another method. It is thus seen that thé sssumed approx-
imate method of integration has the same accuracy as the
expansion of the exact solutlon (6) in a series to the
third term 1nclu31ve. ‘ -

3., NEW THEORY OF FLAME PROPAGATION

s LINAE ¥ E e PR e T T B T R T IR T

In the old theories, as we have seen, two assumptions
were made: '

i
}
f

"1, the mixture starts to react on the attainment
of the temperature T35 and
2. the resction proceeds at a constant speed w.

We know that the reaction speed as a function of
the temperature is expresscd by the formula.

v = SG-E/RT

where ® is the activation energy, a magnitude charac~
teristic of a given fuel. For substances suitable for
combustion this magnitude is usually high and has the
"value of 25 to 80,000 crlories, We should, .therefore,
expect a very rapid rate of increase in the speed of
reaction w with the temperature and, with the coordi-
nate x in the flame. Hence, the assumption of non-

" dependence of tho reaction speed on the temperature in

ﬁ; - the temperature interval. Tj.to T, :is . in no way Jjustified.
2 Thus if B = 60,000 calories, T; = 2000° and T; = 1500°,
the speed of reaction increases 120 times in passing from
P; - Ty. If B = 30,000 calories the speed of reaction
for the same conditions increases almost 10 times. 1In

the case where T; = 2000° and T; = 1700° the speed in-
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creases almost 15 times for ¥ = 60,000 and 3 times for
E = 25,000 calories.

With such a sharp decrease in the reaction speed
with decrecase in the temperature there is no necessity
at all for introducing the self-ignition temperature,

As a matter of fact this temperature was needed only

for establishing a limit below which no reaction occurs,
In actual cases, however, when the reaction speed drops
very sharply with l7wering in the temperature according
to the law w = Se®/BT the latter itself determines the
range within which practically no reaction occurs. For
this reason we may introduce the notation T3 = T' but
no longer as a physical magnitude but as a mathematical
device for approximate computation, namely, as that tem-
perature below which there is practically no reaction,
It is necessary . for us to show that the final result,
that is, the computed velocity of propagation will be
practically independent of the value chosen for this
fictitious magnitude. It is to Zeldovich primarily that
we owe this restatement of the problem.*

*Some perplexity is felt by many to be occasioned by the
following problem, It is well known that the speed of re-
action of most fuels already reaches a very considerable
magnitude at temperatures of the order of 10009, ©Never-—
theless at a flame temperature of 2000° we neglect the
reaction speed at 1000° and consider that the entire re-
action proceeds only at temperatures near 2000°, The
matter is here very simply explained. The velocity of
flame propagation, as we have seen, is proportional to
the square root of the reaction speed. Hence the greater
the latter the greater the flame propagation velocity.
Tor t his reason the latter will be fundamentally deter-
mined by the maximum possible reaction speed, that is,
the speed ncar the temperature T,. The greater this
speed the smaller the time interval within which the gas
remains in the recaction zone. This interval is so small
that in those parts of the zone where the temperature is
considerably below T, the reaction has no time to pro-
ceed at all, although for large time intervals and imn
closed vessels the reaction speed is sufficlently great
at the corresponding temperature. Thus the smallness

of the reaction speed in the zone is determined as its
smallness with respect to the reaction speed near the
maximum combustion temperature.
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= ...Under -the new assumpﬁions,thgwigniaqentalmgquations

of heat distribution (1) and (2) remain unchanged except
that the speed of reaction w w1ll egend on the temper—
ature according to the law w = Se and in the limit—
ing cases instead of T3 there will enter the above men—
tioned temperature T!, In the case where the energy of
activation EB is sufficiently large, namely, when

E/RT; >> 1 the temperature T'! Tbelow which the speed of
reaction may be neglcected will lie ncar T; (which cor—
responds to the case whero (T, — T31)/(T, — Tp) << 1),

Denoting by 6 the diffcrence between T, and any

temperature T within the reaction zone (boetween T,
. —_— m . :
an? ) we may (s1ncc 8 << Ty) set o E/RT equal %o
<g/RT; ' —E6/RT .
+ Thus
- Eo
- T ETE
RT, :
wy = Se e (15)

where wy; 1is a constant magnitude equal to the reaction
speed at the maximum combustion temperature T,. We sece
that the reaction speed drops e times for 6 = RT,%/E,
7.5 times for 8 = .°/Ex2, and so forth, ZFor E =
60,000 calories apd Tl = zoooo RT,®/B & 125°, Hence

for 8 = 250° or T! = 1750° the reactlon speed w drops
almost 8 times compared with its maximum value w,; for

T = T, = 2000°, Thus, if we restrict ourselves to this
degree of acecuracy apd neglect the reaction speed at
T < 1750° we commnit an error not exceeding 12 percent in

the determination of v 2 and still less in the determina—
tion of Voo For such value of 8 (= 250°%) we may: 1)

considor =+ << 1 and make use of the equation (15) and
B3 l .

2) due to the smallness of T,—T! by comparison with
T;—=T, 4in the solution of the proﬁ&cm make use of the

-app“ox1mate system of equatlons(ll) assuming in them

—Ee/RTl

v, o= wy e

We then obtain a solutlon in the form of equatlon
(14) where in the given case :

e

T RT,=® '
= ) M Yap=m 2 AN Pl
I ’.v/ﬁao e amr = i ../.‘ de—ao 7 e P dB

T 8, o
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where B, = EQJ_/RTI2

If we choose 63 egual to 2RT;?/E, that is, neglect
the veaction speed when it is 1/8 as 1arge as the maximum
(w,) then 8 = 23 if we assume § = SRT1 /E, that is, neg-
lect the reaction speed w . when it is 1/2 as large as
wy then B = 3; if @, = 4RT,?/E, that is, wt/w, = 50;
then B, = 4.

By

j =-/Pe~6 g = 1 - e~B1

0
If B1 =2, j = 0.87; if B, = 3, j = 0.95; if B, = 4,
J = 0.98, Thus we see that the choice of €, provided
61<  2RT 2/E has practically no effect on the magnitude
j and hence on the speed of reaction, We may thus with
an accuracy sufficient for our purposes assume in every
case J = l. Otherwise cxpressed we may everywhere in

T Tq
formulas (14) and (12) set f w d@ T equal to f w dT.
T o}
Phis very important result permits us to make use of the
auxiliary magnitude T' without assigning to it any
fundamental significance. In the final result it drops
out. Thus

I = k3 RT, % _ Se~E/RT1 RT1°
T a, B J = ag E

whence according to formula (14)

oo fea seEAT mns oy seEMane
o cpPo ao (M ~T, ) E Po aol B

The above eguation agrees with formula ;9) if the
reaction speed w is taken to be w, = Se"E/RT1 at the
maximum combustion temperature and the difference Tl - T3
the magnitude RT.2/E. In this manner Zeldovich succeeded
in ejecting from the formula for the propagation velocity
the doubtful constant T; and the ill-defined magnitude
T, the reaction time. '

Even in the above form, however, the theory may not
yet be considered satisfactory because the magnitude 3§
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..in it was assumed by us to be constant (reaction of zero

order). Actually, for all homogeneous reactions S depends
in some way on the concentration of the reacting substances.
In the case where the combustion represents the reaction of

a single substance (decomposition of azomethane, (150,

etc.) the magnitude § is some function of the number of
molecules of the combustible in a unit volume of the mixture
at a given temperature. In the case of monomolecular re-
actions S = ka, for bimolecular reactions 8 = ka?. When
the initial mixture consis$s of two reacting kinds of mole-
cules § may be a function of the concentration of both
kinds., For bimolecular reactions in this case § = kab.

The number of molecules a and b are connected with each
other by the laws of stoichiometry and diffusion.*

The number of molecules of combustible a in the
reaction zone decreases as the reaction progresses., More-
over the reaction products diffuse from the reaction zone
into the unburned gas and this also decreases the value of
. The dependence of a on the coordinate x in the
flame region may be found from the simultaneous consider-
ation of the equations of diffusion and heat conduction
(as was done by Zeldovich and Frank-Kamenetsky) leading
to similarity of the temperature and the concentration
fields. The same similarity was postulated consideradly
earlier by Lewis. In the clearest and simplest form this
was done by Zeldovich and Frank-Xamenetsky and these authors
will be followed in the presentation below. There arises here,
however, a very difficult problem with regard to writing down
the equatiorns of diffusion and propagation where a tempera-
ture gradient exists., Zeldovich writes the expression for
the diffusive flow in the usual form D da/dx where D is
the coefficient of diffusion of the molecules a into the
reaction products. If the special phenomena of thermodiffu-
sion are not taken into account it is evident that for equal-
ity of the partial pressure of the molecules . .=& there can
be no diffusion flow, whereas in the presence of a temper-
ature gradient the number of molecules in a unit volume
will be different at different points.** In this case 1t

*We exclude, for the present, from consideration the case of

 twg, .components. and take. it up below in section 3 in the example

of the oxiddtion of (O,

**0Obviously this must be understood as follows. In the field
of variable temperature there exists,as usual, the flow D
da/dx which, however, 1s compensatad by the reverse mass
flow va due to the tendency of the system to balance its
pressure. (Footnote continued on p. 36)
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is necessary to write the equation of the diffusive flow
expressing it through partial pressure.

¥hen the number of molecules does not vary during
the reaction (we at first limit ourselves to this case)
we may, iustead of the partial pressure, make use of the
relation between the number of molecules and density of
the gas and write the expression for the diffusive flow
in the form Dp d(a/p)/dx. 1In this case the change in
the number of molecules of the combustible with motion
of the gas across the flame front (along the coordinate
x) is given by the equation

a a
d g a3 - |
d P p _
——}-C-(Dp) P E vo ax w = 0 (17)

the derivation of which is entirely analogous to that
of equation (1). :

*#%(Footnote continued from page 35) Thus if the number
of molecules a* in the equilibrium state is distributed
as the gas density, that is, a*/p = a,/p, oOr a* =
aoP/Po then the equality of the diffusion and mass flows
may be written in the form of the equation

D'da*
dx

- va¥* = 0 N

whence the velocity of the mass flow is

When the number of molecules &a <changes in space
not in correspondence with the formula a/p = ag/p, Wwe

have to deal with true diffusive flow which is composed
of the absolute flow D da/dx and the oppositely directed
mass flow which balances the pressure and is equal to

va where v, as bkefore, is equal to D/p b dp/dx. Thus
the complete diffusive flow is equal to :
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;o‘ o Since Dp does not depend on the den91ty of the - gas
and hence to a first approximation also on the temperature
(with the same accuracy as K/c ) and since vp = vp we

e may. write the equation of diffusion of the mole¢ules of
combustible in the flame front in the following forms

i a - : a
de — . d =
Dp du;%-~ Vm —L «w=o0. (18)

The first term expresses the mutual diffusion of the
molecules of the combustible snd the reaction products
under the action of the difference of concentration ahead
; of and behind the combustion front. The second ferm ex-
presses the flow of the molecules of the combustible
under the action of the gas flow and the third their dis-
appearance due to the reaction,.

AT S, n o

fu
ol
b

For x =--e:o(a/p)__oo = a,/p,e We introduce a new variable
¥ a = o/p0 -~ afp and in ecuatlon (2) a new variable
: g = Q' (7- To) The two equations then aasume the following
f? form:
I 2% L as
H c.. dx® Byx TVE (19)
Eﬁ P
o
i@ a%q - 4o (191
3 Dpgxs " Tmgy * V=0 en
From the kinetlc theory of gases we know that to a

first approximation Dp = A/cp. The two equations then
become identical. '

As we already know the boundary conditions for equation
(19) will be

: L
(e)_mr: 03 (e>+m = 'EQ“? (TI—TO) = ET =

For equation (18) we have the boundary conditions

| :
t
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a

('?I'> = 9"—9'9 i. e.- (a')-oo '= 0 and (a)+m - =9
P/—=  Po Po
Put according to formula (A)

“j‘QL = 1 or EQ. = MON

NMop, oo "
that is,

' a M. N

(0)e = (@)oo = O} (9)+c; = (GJ)-!-oo = =2 = =2

If the equation and the boundary conditions for ©
and o coincide, that is, a =6 in the entire interval

ag, a cpT cpTo
Py P Q! Q!
or
cpl + 57 = cpTy oy = cpTy (20)
H= ¢, is the store of thermal energy of a unit mass of

the mixture,.

Since a is the number of molecules of combustible
in a unit volume and Q' the energy liberated in a chemical
reaction of a single molecule of the combustible, aQ' 1is
thas store of potential chemical energy of a unit wvolume
of the mixture and aQ'/p is the amount of chemical energy
of a unit mass of the mixture. Hence, equation (20) may
be formulated thus: The sum of the thermal and chemical
energies of a unit mass of the mixture during the com-
bustion process remains constant., That this sum is the
same before and after the combustion process seems obvious
since it appears to be a simple consequence of the law of
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conservation of energy. Siance, however, we here have

"to deal with the phenomena of thermal comductivity and
diffusion equation (20), referring to different stages

of the combustion process, in no wise appears a consequence
of the law of conservation of energy. Thus, if, (as is
actually the case), the relation Dp = ¢ /A between the
coefficients of thermal conductivity and diffusion were
not observed it would be easy to show thmt equation (20)
would not be correct. The sum of the energies at some
points of the combustion zone would be greater than

cp To + 2,Q'/p, and at others less. TFor this reason the
demonstration of equation (20) given by Zeldovich and
Frank-Kamenetsky is an essential supplement of the work
of Lewis who first postulated it.  We shall 'see below how
this law can be generalized to the case where Dp is not
equal to A/cp.

From relation (20) Lewis did not derive any clear
and simple conclusions for the general case of flame prop-
agation. He computed, with the aid of this equation,
the flame propagation for the individual and very special
case of combustion with the decomposition of ozone. Un~-
fortunately he evidently permitted important errors to
enter in his dcrivation., It was possible for Zeldowvich
from this equation, together with all previous results, to
arrive at general conclusions for the combustion theory
which we here present, working them out to a greater
accuracye. ’

According to equation (20)

a = o f&g _ Etp (T"To)l
i . Po Q'

and since

Q‘( = Q: :_-. Lp" = EP(TI-TO) [ and'ﬁ'__(_’ - NMO
¥ oMoN . 5y Po B

hence
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Let us return to formula (20) .giving the relation
between the concentration of the combustible a and the
tenperature in the heating and reaction zones, rewriting
it in the following form:

cp(T1¢T) = 3§¢

or
am  cp(Ta=-T) _ cp(T3-T) cp(Py-T)Mg Ty = T .
P Q! 8 & Ty = Tp ©
= P
T -7
= (1 - 2 ) My = (1 - 1) M,
T, = To

or

That is, the relative weight concentration of the combustible
B at any point =x of the combustion zone is equal to the
difference between unity and the relative rise in temperature
T at this point. Since for x = -», B =1 and T =0 and
for x = 4, B =90 and T = 1 the curves 3B - x and T - x
are symmetrical as schematically shown in figure 17,

Having thus obtained the relation between the number
of fuel molecules and the temperature we may now find the
velocity of flame propagation without making the incorrect
assunption of the nondependence of thé speed of reaction
w on a which assumption was made in the derivation of
formula (9). This computation was first carried out by
Zeldovieh and Frank-Kamenetsky.*

*

We leave out of account the evidently incorrect com-
putation of Lewis and von Elbe for the particular case of
the flame propagation in ozone. :
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In the case of nonomolecular reactions

.Substltut*ng this expre531on in the 1ntegra1 I of formula

(13) making use of (21) there is obtained

T E/Ré R 5 . .
v - - 2
pe [kl ge-m/Rn, [ D8 -EO/RDP
J ao - 1/ T T1 - To :
7t mt

The magnitude VTO/T may be taken outside the integral sign
and placed equal to T,/T, Dbecause T' is near in value
to T,. In this case ’ o

- m

ke -E/RT, To < >
I = ——
T

1 *o
Pa
where J =V/n‘e"BBdB = 1 - 9'51(51 + 1)
O’
Choosing
6 - 2RT12’ 3RT12’ 4RT®
1 B E B

we obtain for By, the values 2, 3, 4, and for J the

"; values 0.6, 0.8, 0.9. Thus we do not make any large

error in the expression for the velocity in setting j“= 1.

" In this case, substituting the value of I in formula (14),

we obtain,*

=

,These formulas dlffer from those of Zeldovich only in:

“‘that under the square réot there stand™the magnitudes
TO/T and (T,/T )® for monomolecular and bimolecular

rcactlons, respectlvely. .The absence of these multipliers
in the formula of Zeldovich is associated with a different

manner of writing the equation of diffusion.

-
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e Do e ~B/RTy <RT12>2

° pocp 'Tl (Tl - To)

4
I

2hepk To (RT,°\? -E/RT
—_—2- 2 (——l—> e /R cm/sec (22)
poLe T, E

The correspoydlng computation for the bimolecular reaction
(w = ka®e ) gives

/@X(kao) ) “/RT1 (R.1;312>3

© v poC

_ J/é%(kao)cp <lo>

Since the only magnitudes depending on the pressure
at which the test is carried out are a, and p, (both
directly proportional to p) the linear velocity v, for
monomolecular reactions is inversely proportiomnal to ,/p
and for bimolecwular resactions does not depend on the
pressure.

In the derivation of the above formulas we assumed
that the main part of the reaction proceeds in a zone
situated near the maximum temperature T;% and is limited
to the temperature range @ = Ty = T!. As we have seen

*The manner by which the combustion of all the initial gas
supplied at a mass rate vy 1is maintained when the com-
bustion . proceeds in a mixture 90 percent diluted with the
products of combustion and containing only 10~ 15 pcrcent
of initial number of molecules of the fuel may appear
strange. As before this gas with low fuel content moves
with mass velocity vy and it may be asked where the re-
maining 90 percent of the mixturec is burned. There is no
contradiction here and the sxplanation is that the remaining
90 percent of the fuel is supplied to the boundary region
not by the motion of the gas but by the diffusion of the
fuel molecules to the place of reaction. Thus all the fuel
burns in the combustion zone but under conditions of strong
dilution with the reaction products.
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the hethod of solution is approximately true only for -

€; < 0.25.Ty% .. Since the number of molecules. a_ de-
creases with increase in the temperature according to
formula (21) the mixture, in the range of 6, (from

T, - T! to T;) will consist mainly of the reaction
products and contain a small percent of the initial
regulating substances. In connection with this it is
necessary to check to what extent, under these conditlons,
the assumption will be Jjustified that the most rapid re-
actlion takes place within the zonée and to what extent

the reaction may be neglected at temperatures less than

T' = T, - 6, while maintaining the condition 6, < 0.257,.

For a bimolécular reaction the conditions will be
least favorable. For this case

. B E - E E6-2)
RT g2 RT 2  RT, T T op,
w = ka® = = (.Q_ 1 " 1
e T?e A\T1 e
E & 6 N\
- = =/(1 - =)
F (...@.)33 RTy T1/( Ty/
Tq
where F 1s a certain constant depending on T, and
8§ =% - T. If the reaction velocity is represented as

a function of 6/T; the shape of the curve will depend
on the value of ¥ = RT,/E. Carrying out the computation
for ¥ = 0.05, 0O.l1l,and 0.2 we shall find that if the re-
action velocity w may be neglected for Y = 0,05,

/7y, > 0.25, that is,consider that practically the entire
reaction occurs at ©/T, < 0.25 then this is no longer
true for Y = 0.2, Hence for a bimolecular reaction the
application of formula. (23) is restricted to the values
RT;/E =" 0.1 or values of the energy of activation EB

~larger than 40,000 at maximum temperature T, % 2000°,

For monomolecular reactions conditions will be more

favorable and formula (22) will be applicable to cases
of practical interest. , : '

The above approximation,.fundamental- for the theory,
may be analyzed more accurately though in a less clear
fashion in the following manner: As we have seen the
velocity oﬁhflame propagation 1s determined by the in-

tegral V/n w dT = I, We have already shown that thié
. T'l - .
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integral should depend 1little on the choice of T!. In

other words it should differ little from its ‘limiting
T1 ‘7 . : .

value w 47, In order that this be true it is nec-

essarg'thaﬁ w(T') should be sufficiently small. We

obtain a correct result only if the difference €, = T,-T!
thus determined does not exceed 0.25 T,.
T " R . sl'__l__gﬁ . |
[ RT1/RT,2 - 1= . ,
I=/wdT=Ae (1> fe. g% 4p=1j (24)
B .
. v
mt 0
where
E6, 1 8
S—————'and81= = 2 =
RT12 RT12 A Y

FPigure 18 shows graphiecally jJ as a fuanction of g5 for

Y = 0,05, 0,1 and 0.2. The arrows indicate the values of

By for which j does not differ by more thanm 10 ~ 15
percent of its limiting value. We see that these values of
gy will be 4, 2.5, and 2 and the corresponding values

of 63/T1 = Yg; will be 0.2, 0,25, and 0.4. Thus, here
too,we come to the same conclusion as before, namely, that
the solution is valid only up to values of Y < 0.1 since
for large values of ¥ the reaction zone is propagated in
the temperature range G, > 0.25 T, and the assumption

that the main part of the bimolecular reaction occurs in
the temperature range near T, becomes untrue., We may
note, by the way, that the limiting value of the integral

J = 2 obtained above (see formula (23)) is not correct and

is associated with neglecting the term YB 4in comparison
with unity in formula (24). The value of this integral
depends in fact on the parameter Y and for the values

most often encountered in tests the limiting value of the
integral is equal to unity. In other words under the square
root sign in formula (23) there should stand 2 instead of 4,

In the zone of reaction x > O, as we have seen,
Ty - T 1is small and of order of magnitude equal to RT, 2/E.
We shall denote the concentration a of the fuel molecules
for x> 0 by aerf. Then according to formula (21) ages
will be of order of magnitude equal to
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2
eff © Py Ty -~ Ty L E /Ty - MgQ'N B \T,

= g

Po%p B14? (To)_ pocplo RT: _ pep B2 (25)
Q' E - N1y .

N Q! =B Q! E

If we consider that the fuel concentration in the
combustion zone ‘is constant and equal to agrr we are
Justified in the solution of the problem of velocity of
flame propagation, in making use of formula (16) derived
for reactions of zero order substituting S = kagsry for
monomolecular and ka2gfy for bimolecular reactions, We
then, as may be shown without difficulty, obtain the same
result as with the strict treatment expressed by formulas
(22) and (23). Formula (16) and the expressions for the
effective concentration agpr are thus sufficient for
obtaining an expression for the velocity of flame propa-
gation in various kinetic cases. In particular this re~
mains true also for the case where the reaction occurs
between two components a and b, for example, according
to the law.

w o= kabeuE/RT

If there 1s a deficiency in the component a and
an excess in the component b the concentration ©b'! of
the component in the reaction zone may be assumed equal
to its concentration in the combustion products (it is
computed -by the stoichiometric equation from the initial
state composition of the mixture) and the concentration
a8gff Mmay be computed by formula (25), Then substituting

the value w = k&effb'e-E/RTl thus computed in formula
(16) we obtain a correct result. It is interesting to
note that the actual effective concentration of the fuel
molecules in the reaction zone does not depend directly

on the initial concentration a, but is determined only
by the maximum temperature of combustion T,, Thus, if

" “the "1&%48F1Y madTntained constant for warious values of
ag (by substituting, for example, one inert diluting
substance for another with a different density or specific
heat or by varying the initial temperature of the mixture)
then the actual concentration of the fuel in the combustion
zone remains constant. : o
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Iff view of the above circumstance it would be prac-
tically impossible for us to determine the order of the
reaction from flame propagation tests at constant pressure
(varying a, by dilution with an inert gas). Since, how-
ever, aeff 1is proportional to the density of the gas or
its pressure we may determine the order of the reaction
from tests at various pressures. In the case of the com-
bustion of a bimolecular system consisting of molecules
A and B we may establish the order of the reaction only
relative to that component which is in excess since only
its concentration is entirely determined by the initial
concentration and is ‘equal to the difference between the
initial concentration and ‘the number of molecules enter-
ing into the combustion. Thus, in the example considered
below of the oxidation of CO, from a comparison of the test
data with the formulas for the propagation velocity we can
assert only that the speed of reaction is proportional to
the water vapor concentration, does not depend on O, in
oxygen~rich mixtures &and is proportional to the CO con-
centration in mixtures with excess of the latter. More-
ovér from the dependence on the pressure it may be con-
sidered that the reaction has a second order. If the
assumption is made that the kinetic law is the same for
mixtures rich in oxygen and rich in ©CO - it follows from
these data that the speed of reaction is proportional to
the produect (CO) (Hp0). If, however, this assumption is
not made the following law would satisfy the test data:
The reaction speed is proportional to the product of the
general pressure by (Hz0) in excess O, and (CO) (H;O0)
in excess CO.

It should be stated that although the new theory,
with the aid of the test results on the velocities.of
propagation, provides much information on the kinetles.
of homogeneous reactions at temperatures fromwhich the
reaction time 1is measured in 107 -~ 1075 seconds (pro-
vided by no other methods); from this peculilar nondepend-
ence of the effective concentration on the initial con-
centration no complete guarantee of the unlqueness of the
solutlion of the problem can always be given.

In the derivation of formulas (22) and (23). we made
a number of restricting assumptions not always corresponding
to the trug conditions of the flame propagation. -Our further
problem will be to free the theory of these restrictions
and to extend the formulas obtained to any real case.

These restrictingiassumptions.were:_

(1) the specific heat was constant
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.(2) . the ratio %/c v that 1s, thé ratio of’ the
" heat conductivity: to the Sp601110 heat
was constant :

(3) the number of molecules dld not vary during
the reaction .

(4) the coefficients of heat conduction and
: diffusion were °qua1'

In the case thdt A/c is oonstant but A is
variable, it ig necessary to employ as the variable not
the temperature but the heat content H and therefore the
equation of heat distribution in the form (1'). The con-
centration field afp will be similar to the field of
heat content, equ%tlon (Zl) being replaced by the equation

iy - H
a = ao JQ.. .ITI.!—..__.__. (26)
Po H1 = Hp

The method of solving the equation will be entirely anal-
ogous to that which was earlier emploved except that H

will everywhere be substituted for T, Sinece, however,
1

in the integral w dE the temperaturc eanters ex-
By B/ R 4 :
plicitly Qlf = Se I> and H! is the heat content
i

corresponding to a certain temperature T' near T, it
is necessary to transform this integral to the variable

7

T in the form '/P wcpdT where cp is variable. More-
KAE e .

over, if the reactlon is monomolecular w 'is proportional

to a . which is turn in linearly connected with H. There
thus enters under the integral c¢,2 and for bimolecular

Areactions‘ cn3 However, since the temperature interval -

in which the react:on occurs is not large it may be assumed
that within it is constant corresponding to a tempera-
ture near the combustion temperature and a composition -of
the gasg approximately that of the products of combustion,

We shall denote the value of ¢ corresponding to the
temperature T, by cs and the corresponding value of
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the heat conductivity by  A*. Computation shows that
formulas (22) and (23) in their second form hold also
for variable specific heat except that for ¢ and A
there is substituted c¢* and A*, that is, tﬁe specific
heat and heat conductivity of the products of reaction
at the maximum combustion temperature T,.

In the .case of non~constant A/cp and Dp we may,
in integrating eguation (11') assume ?\/cP = A%/c*, that

is, consider it a constant magnitude because of the small-
ness of the temperature interval Ty - T'!'. Vith regard
to the integration of equation (l1l) there is substituted

Top/AV(T, = 2o) for (c,/A) (T, - T,) where (cp/A) is

defined as
Cp
/“A— aT
T
T, - T

Thus in the formula for the flame propagation in-
stead of the magnitude Acp for the monomolecular and

Ac_® for the bimolecular reaction there entsr corre=

spondingly

o X T~ %
(2;.\2 L of2 ana (.Z\_. ®°p oy’
cp/ * cp A

Due to the smallpness of these corrections, however, we
shall take no further account of themn.

If the reaction occurs with change in the number of
molecules in the ratio =n3/ng then in the reaction zone
where the principal mass of the gas consists of the prod-
ucts ©of reaction the number of fuel molecules will be not
a 8¢ Hy'= H

- = but

P Po Hi = Ho
a . ag ny, H - H ’
- T = A (27)
P Po Bz Hy = Hy
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because the density of -the gas varies in the ratio n,/ng.

" In corresponderce with this~ ny/ng ~and - (n,/ng)® for mono-

molecular and bimolecular reactions, respectively, enter
the formula under the square root sign. .

Finally a very ‘important case to consider is the
one where 7\/cp # Dp their ratio being

2L“: Dp = A ¢ B
°p

This is particularly important in the cases of combustion

of hydrogen in &2ir or chlorine where the diffusion is

determined by the diffusion coefficient of hydrogen and

the conductivity by that of the mixture. Simple conmputation

shows that in this case it 1s necessary to introduce under

the square root sign in the formula, the additional factor

A/B for monomolecular and (A/B)2® for bimolecular reactions,
In the case A/cp: Dp = A :+ B the fundamental equations

(19) becoms

i28 a6 -
A - vy — + w =20
ax® o 4x
-]
d do
- vy = + = 0
B dx= B 4x v

According to the law of conservation of cnergy in the
initial and final components ~

(@Yo = ay = 22 = (e = 6, = B (Ty = To)

Po Q!

Since L = cy (T, = T,) = 2,Q"/p,

In the reaction zone « and 8, as before, approximately
satisfy the eqguations : : '
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‘Integrating in this interval we ‘obtain

=) .
+0) dx
w dx

wIH

(de\ <%§; +oo— 9’-9— -

o
b
bl
M.
(\g.

that is,

A
== = 4 49 and o = -8 + C
B B

dx dix
Since according to the boundary conditions for B = 61,
a = ay = Gy we have
(1 - A

C-—(l'—B>61

whence '
A
Ae—(——1)91
= = . 2
o B B (28)

In region I we may in equations (19) set w = 0 whence,

integrating once, we obbtain

as

A— - v, B8 =0
dx o

B de _ vp o = 0
dx

Integrating a. sscond time we obtain

o= ot e B and ¢ =g.!'! e A
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where 6' and o! are the values of 8 and -« for

x = 0 bounding regions I and II.-"

ag a - ao
L — — = 0y -(-)— = C(,I
po p m o

wheénce

or by formula (28)

a _ A
—_— o =k e _G
5 B(1 )
oY
A c A (Ty = T°) A T, T
= o & C%p - _A 0 At S . _0___1______ 29
a P 3 Q! (ry ) B po e (1, —T,) B0 T T, - Ty (29)

In other words in the region where the reaction proceeds,
the values of a differ from those which would be obtained
for A = B (see formula (21)) only by the factor A/B.

In their final form the equations for the normal
velocity of propagation, in the case of simple monomolecular
or bimolecular reactions with one substance taking part
(decomposition of (1 20, explosive substances), are written

as follows:

/%%*Cpk T AN/ n_\/RT 2>2 - HT
> Co)E)(E)(E2) e (30)
Po L 7,7 "B’ "ny E

for monomolecular reactions, and

]

o [ EyeyETE R

PQLS
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for bimolecular reactions.

It is necessary to say something about the widths of
the heating and reaction zones. In the heating zone
(x from -= to 0) according to formula (7) for D3~ T, T, - T,

? - T = (7, - T,) %%
where o = vpc,/A. This means that the drop in temperature
T - T, from it%s maximum value T, - T occurs e times
. s 0
in the distance
2 A = A -.-];- _}3— _.P.E_C* * —}—)_. 2.9- - Do Tl (12)
5 CoVm cpp0 Ve =7, cppo = vO 17 Y, To

where v, 1s the linear velocity of propagation and Dy
the coefficient of diffusion at the initial temperature
To' In the majority of cases at atmospheric pressure

Do ¥ 0.23 T, ¥ 2000°; vy = 50 cm/sec

-

ence tho heating zone

0.2 2000 B -
= = . 6 2 .
[4 50 X200 2 x 10 cm

e

.2 - 0.3 mm

The reaction zone ¢ may be

roughly estimated as follows
from equation (11)

dT> '~ "mCp
dx /o >\O (Tl - TO)

where (dT/dx)o is the value of the derivative at the
boundary‘of the reaction zone. We note further that for
X =+ o, ‘(dT/dX)oo = 0. We shall consider that the mean

Xalue of &T/dx in the reaction zone will be equal to
g(dT/dx) . Hence
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odx T 2 A (Ty f\To) _

or, integrating we obtain

m -—
Ty TO Vmcp

E' ~ 2

(33)

He

As we see, the drop in temperature‘in the reaétion zone
is of the order (T, - T!) = (T, - T,) 0.2 whence the
reaction zone is of the order of magnitude

€' =0.4 £ = 0,4 x 2.6 x 1072 Z 0.1 mm = 1072 ¢m

The mecan frce path is of the order 10°° ¢m at normal
temperaturc and pressure. At 2000° it will be approxi-
mately 10 times as large, that is, about 107% cm, Dhis
means that the entire width of the reaction zone is of

the order of a hundred times the length of the mean free
path. The number of impacts during diffusion in this zone
is n = (€/1)2, that is, of the order of tens of thousands.
The time of stay in the reaction zone is

£ v -2 %
T = E_ =.£_ o - 10 X = = % x 107% gsec
v Vo T, 50 20
The {ime between impacts is 1/u = 107%/10% = 1079, that is,
n = 10%,

4. CONFIRMATION OF THE THEORY FOR SIMPLE REACTIONS
(THEORY OF COMBUSTION OF EXPLOSIVE SUBSTANCES
AN¥D IN¥ PARTICULAR NITROGLYCOL)

Belayev (reference 4) proposed a theory according to
which all easily vaporizable explosive substances buran in
the gaseous phase. The surface of the explosive burns con-
tinuously by the heat of the combustion conducted to the
surface, the heat bringing about vaporization and raising
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the temperature at the surface to the boiling temperature

Ty and thus supplying a continuous flow of vapor to the
combustion zone. For all comdbustible explosive substances
capable of being vaporized without igniting ( and which

not only detonate but burn) this new point of view regarding
their combustion appears to be much more probable than

the 0ld conceptions of direct combustion in the condensed
phase., Belayev proved his hypothesis by direct tests By
photographing the flame of nitroglycol he showed that
between meniscus of the liquid and the flame zone there is

a narrow dark gzone, the width of which is measured in tenths
of millimeters at atmospheric pressure and attains .1l millie-
meter at atmospheric pressure and attains 1 mllllmeter for
combustion at lowered pressure, It is thus possible to con-
sider the theory of Belayev as proven by direct experiment.
The mass rate of combustion vy may be directly measured
from the rate of lowering of the meniscus (u) in the com-
bustion of nitroglycel, This directly measured magnitude
may be provisionally denoted as the linear velocity of com~
bustion of the liquid nitroglycol. It would be more correct
to call it the linear velocity of vaporization in the com=-
“bustion of nitroglycol. The mass rate of vaporization vy
is evidently equal to the mass rate of combustion of the
nitroglycol vapor since all the nitroglycol dburns in the
form of vapor. The linear speed of combustion of the
nitroglycol vapor is therefore

v

_vp_ Lulle]
o po

Po

where (p) is the density of the liguid nitroglycol, p,
the density of the nitroglycol vapor at the test pressure
and the initial temperature.

Belayev applied the theory of Zeldovich~Frank-XKamenet-
sky to the computation of the speed of combustion of the
nitroglycol vapor. We shall present the computation, making
use of the equation of heat propagation, in the form of
equation (2). :

As was done before we shall divide the entire process
into that of region II where the main part of the reaction
takes place and where it is possible to neglect the term

mgpdT/dx and region I or the preheating region where it
is "possible to neglect the speed of reaction w. The
difference between the present case and that described
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above is that region I itself must now be further sub=-
~divided into region I! (the dark preheating zone of the
vapor) and region I'! of the preheating of the liquid

explosive from the initial temperature T to the boil-

" ing temperature at the boundary of the liquid and vapor
phase (fig-. 19). In both regions the same equation
applies :

A a’r +..vc aT .
' ax? nop dx
except that the constants A and ¢ are different. For

the liquid these magnitudes will be denoted (A) and (cp).
Since the vaporization associated with the expenditure of
thermal energy occurs at the boundary between the liguid
and vapor phases of the explosive substance, the flow of
heat . )\(dt/dx)bt from the vapor side of the boundary sur-
face will be grecater than the flow (A) (dT/dx)b" from

the other side of the boundary surface in the liquid phase
by the amount of energy required in vaporizing vp, &rams
of the substance per second per unit area of surface.
Hence,

dT\'! ary’
wr e (7)) = (@,
where F 1is the latent heat of vaporization of one gram
of the explosive.
The temperaturec distribution is qualitatively in-

dicated in figure 19. Integrating the equation for region
I' we obtain

dT r ' | a >’
NG e (3 - mos) + h ()]

Integrating the equation for region I*! we obtain

[A] <§§ '; = vplepl (Tyoi1 - To)
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whence for region I! we obtain

A ——

&

= Vi {?é (T~ Tbo;l) +'[6P](Tboil - T°)4-F} (34)

or integrating, the width of the dark preheating zone is
obtained as

A cp (T3 = Tyo31) + [ep](Tyoi1 = To)+ F
nC in = m (85)
P Pod (Tooi1 = To)*+ ¥

The magnitude in the numerator under the logarithm sign
is no other than the heat of combustion of 1 gram of the
liquid explosive. Thus

¢ = A 1n L
oV [epl Ty 1~ T)+ F

(351)

As regards flame propagation velocity the latter
will be expressed by the same formulas (30) and (31)
as for the gas because in zone II the equation is the
same as for the gaseous case and the expression for the
derivative according to formula (34) is '

3

NEOE

b

A study of the speed of combustion of nitroglycol
shows that (u) increases in direct proportion to the
external pressure p, that is, (u) = v /(p) where
Po is directly proportional to p ana the density
of the liguid (p) does not depend on the pressure. As
we have seen, the: formula v, vatries in inverse proportion
to /p for monomolecular reactions and is independent of
P for bimolescuvlar reactions. Thus, inm order to satisfy
the test data with regard to the dependence of the speed
of combustion of liquid nitroglycol on the pressure, we
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must assume that the reaction is bimolecular. On the
‘otlher hand, direct study by Appin of the slow decomposition
of nitroglycol vapor at low temperatures and pressures
has shown that the speed of rcaction obeys the monomolecc—~

o _ 14 _ 35000
ular law w = 10 —FT

Belaycev assumes that at the high temperatures corres~

sponding to the combustion zone, the spced. of activation
of the molecules as a result of the impacts becomes in-
sufficient for the establishing of a stationary concen-
tration (computed from statistical data) of the active
molecules. ' The speed of rcaction then begins to be deter-~
mined by the number of activating impacts, that is, becomes
bimolecular. A similar phenomenon has long been known for
all monomnlecular reactions which with the l-owering of
Pressure show a drop of the molecular constant and hence
for sufficiently low pressures become bimolecular. It is
also known that with increase in the temperature the drop
in the constant with decreasing pressure becomes more sharp
and thus the pressures at which the reaction passes over
into the bimilecular increase.

It is possible that in this way the hypothesis of
Belayev should be explained according to which at very
high temperatures of the reaction the decomposition of
the nitroglycol is bimolecular, even at atmospheric
pressure. It should be noted that according to test
results on the kinetics of monomolecular decomposition
the reaction products as a rule are capable of as good:
activation of the molecules of the initial substance on
impact as the impingement of two molecules of the initial
substance. Thus the bimoclecularity of these reactions is
exceptional. Whereas, for example, for the usual bimolec~
ular reaction of the type 2HJ = Hy + J5, the decomposition
is possible only on the impact of two particles of the
initial substance and w = kale™ ™™ RT; in this case the
activated molecule of the nitroglycol decomposes by itself
and the reaction is possible on impact with any particle,
particularly with particles of the products of its de~
composition, whence :

v = Z2a(M)e E/RT

where (M) is the number of all molecules (both of nitro-

glycol and of the products of its decomposition) in a unit
V(‘)lumeo ‘
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The nupber (M) is determined by the initial number
~of molecules of nitroglycol a, and is egqual to T, /Ty
whence S ' :

w = (2a) aec ~E/RTy TO

T1

"Remembering the character of the derivation of the

expression for the velocity v, we shall see that it
will be determined not by the cexpression for dbimolecular
reactions but by the expression for monomclecular reac-—
tions with this difference only, that instead of the
constant »f first order k(~1013 - 101%4),we shall have

. m
Za = ,/E%Geuaq =2 T 1010
RS 1

In the case that A = B, we cbtain

vo-/—;':z\ JEE) ™ (36)

E

As in the case of purely bimolecular reactions v,
does not depend on the pressure p because a5 and p4
“are directly proportional to the pressure. Hence u and
will in correspondence with the test be directly

v

m
proportional to the pressure., Since p, = pao/N where
B is the molecular weight of the nitroglycol,

' E
2A*Za 2 u T 2, \/RT -
W o= E ( °>< X >e RT, (361)

v

The fundamental magnitude for the computation of the
speed of combustion is the heat of decomposition L of the
nitroglycol in the flame during its combustion in an inert
atmosphere, In the case of its combustion in air there
arises, as we have seen, a secondary flame of combustion of
the products of the primary decomposition., This secondary
process has no relation with the speed of combustion and
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" we are therefore interested only in the heat of combustion
" of the primary process which readily occurs.-.in.an.inert
atmosphere, Direct measurement of L has not been. made,
Appin, howsver, determined the products of the primary
flame by direct analysis, The latter gave the following
final chemical equation for the decomposition:

CoHg (ONO,) 5 = 2NO + 1.700 + 1.7Hz0 + Q.3C0, + O.3H,

This shows that the greater part of the molecules is
decomposed according to the equation

CoH,(ONO,)s = 28O0 + 200 + 2H,0
and a smaller part according to the equation

Comyputing the heat of this decomposition of nitroglycol

on the basis of the heat of formation, as recommcnded

by A. Schmit, Belavev arrives at o value L = 450 calories
per gram. Knowing L and using the mean specific heat

of the recaction products given in the tables of Lewis

and von Elbe, Belayev arrives at the following value for
the maximum combustion temperature:

T, - T, = 1350° or T, = 1850°+ 300° =1650°K

. The energy of activation E 1is taken by Belayev from the
tests of Appin for low-temperaturc decomposition of the
nitroglycol vapor equal to 35,000 calories. The specific

heat of the reaction products for T, = 1650°K is computed>
" by Bslayev from the data of Lewis and von Elbe as »c§'=r0335.
The heat conductivity of the products for T = T, was con-

puted from the mean conductivities at ~0°C and then corrected
for the temperature 1650°% by the correction of Ceteriand,

The ratio of the number of initial to the number of final
molecules mn,;/n, = 1/6 (according to the stoichiometric
equation). . :
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= We shall carry out these computations by a -somewhat
different method, According to the kinetic theory of

gases Az =~% 3323 (for derivation see below, section 5).
Po "0 .

In the case‘of’the'decomposition of the vapor of pure
nitroglycol n, = ag

2. 3x83x10°xT, . 3x83x 10°x 1650 _ 4x 101
u = = ~

m mn m

Both as regards the number of impacts and the heat
conduction the principal role in the combustion zone will
be played by the molecules of the decomposition products
of nitroglycol, these being the lighter. Their value of
p must therefore enter the formula. Assuming p = 30
we have '

4
u2=-§x 10105 ¢y = 0.35
whence -
B 35000 .
AT 1.5x 10%, - =3 _ ~
= - e RT, e 3300 1046 _ o5 5431075

1t

ToN2 _ 7 300)2 I ng 1 /RT® 2:.x 16502\2 4
e} - B emrmer o e o e . = 2. 4 10
< 30 *ny,. 6 ( F > ( 35000 > o4 x

T,/ \T650

Substituting all these values in formula (36) we obtain

= 7 cm/sec

.k 5 9 104 -5 —
v = 2X 1.5% lg 2.34x 10" x 2.5x%x 10 - J%O
o 2 x 10 30 x ©

and the corresponding mass rate of reaction vy = v, P,

at P =7 x 1_0—3 gives Yy = 4 xw 9 x 107" g/sec cni2. The value
actually observed, by Belayev at room temperatlure is

4 x 5 x 107® gf/sec cm®, The agreement between the theory

and experiment is therefore extremely good.
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. On increasing the initial temperature T, at a

given heat L the maximum temperature T, increases and
hence also the - velocity of reaction and the velocity of
flame propagation. 3Belayev computed btemperatures T,
corresponding to various values of T, from 20°to 200°,
Moreover, he experimentally determined the speed of com-
bustion u (proportional to vm) at various temperatures
Tye We present below some of the results.

TABLE 2
T in OC ?_in °k T in ©g u = -8
[o] . 1 o]
Po
20 1650 20 0.29
50 1685 60 33
110 1753 100 44
140 1790 140 .52
170 1828 180 . 57
200 1867

The relation between T, and uw = vy/p,, as is
seen from the formula, is

Lo _E . b *
in T, = ZmT, + Gy and 1g T, 2.34x 2X 2T, * e

Substituting for each given T, the computed T, and
the experimentally determined u, we should obtain a
linear relation between 1lg u/T, and 1/T, with the
slope.

E_ . 55000

, 3800
9.2 9.2 38

Figure 20 shows the experimentally determined relation

between 1lg u/T;, and 1/7, for liguid nitroglycol (data
" of Belayev)., We see that the points with some scatter -

*7, does not enter since, according to formula (36) with
increase in T,y there is a simultaneous decrease in a,
so that = (ay T,5)? remains constant..
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arrange thémselveés on a straight line with a slope equal
to 4100, '

The above results thus also confirm the. theory of
flame propagation and give, for the energy of activation,
a value practically coinciding with the value 35,000
assumed by us according to the tests of Appin for the
computation of the absolute velocities.

In conclusion we shall compare the observed and com-
puted widths of the heating zone., Substituting in formula
(35) the value A* = 2 x 107™*. ¢} = 0.4 and vy = 4.5x 1072
the heat of vaporization of nitroglycol F = 43,000 calories
and the boiling temperature Ty = 2009C, we obtain
‘{ =0.2 millimeters. The width of the dark zone at atmos-.
pheric pressure directly measured by Belayev (microphoto-
graph and flame photograph) gave a value of the same order
of magnitude.

Since the velocity v, varies in direct proportion
with the pressure, with decrease in the latter, the width
of the dark zone should increase in inverse proportion
to the pressure and, as a matter of fact, the tests of
Belayev for pressures of 100 millimeters give a width of
the dark zone of the order of 1 millimeter. ThHus the tests
of Belayev give excellent confirmation of the new theory

of flame propagation,

5. CHECK OF THE THEORY BY EXAMPLE OF A CHAIN OXIDIZING
REACTION (THEORY OF FLAME PROPAGATION IN CARBON MONOXIDE,

AIR, AND CARBON MONOXIDE -~ OXYGEN MIXTURES)

One of the most important combustion reactions is
that of the combustion of carbon monoxide. Together with
the oxidation of hydrogen this reaction determines also the
combustion of hydrocarbons (since it may be assumed that
in the heating zone the hydrocarbons are first transformed
into €O and Hy which then burn).

The oxidizing reaction of hydrogen represents a chain re-
action with many branches, (The question as to the applica~
tion of the theory of Zeldovich to this type of recaction still
remains open.) In contrast to this the oxidizing reaction
of CO represents a chain reaction, the velocity of which
very soon attains stationary values, and we may assume that
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notw1thstanding the small width of the flame front the
velocity o0f tThis fédction is completely determined by . .
the tomperature and the concentration at any given place
within the combustion zone. This behavior of the oxi-
dizing reaction of (O is-associated with the fact that
it .takes place only in the presence of water vapor, the
products of whose decomPOSition (0H, H) are active cen-
ters, ~Since- the gquantity of OH and H is limited by the
moisture content the reactlon velocity cannot exceed a-
certain definite value. "In'section 1 we enumerated, in
détail, the various properties of the flame propagation
velocity in CQ mixtures.  Zeldovich analyzed the data
-of various foreign authors and also those of our coworker,
Barsky, and showed that the »properties of the €0 flame
and its absoluvte velocity may be obtained from our general
theoretical formulas if it is assumed that the oxidiszing
reaction velocity of ‘00 1is determined by the following’
kinetic law:

' _ 25000
a[c0;] af0,] d[uO] RT
TTar =-2%73% T Tap T 2e [Ez0][c0] (37)

We may note that Hy0 appears only as a catalyzer
and is not required in the course of the resaction. 1In
order to present more clearly the reaction velocity
according to (37) we construct a table of values of

-25000/RT
W= e (the probability of the reaction computed

for one impact of the molecules H,0 and C0) and the
reaction times T (time during which the products Oy
and CO are decreased to 1l/e of their 'initial values),

TABLE 3
To X ‘w X lO? T‘sec
1300 0,03 3 x 1073
1600 . 33 3 x 10™%
2000 2.8 3.5 x 10-5
. 2400 7. 1.4 x 107°

In order to compute the velocity of flame propa-
gatlon according to the kinetic law of equation (37)
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we shall distinguish case 1 when the initial gas contains
GO in considerable excess of the su01ch10metr1c quantlty
and case 2 when there is a deflclency of CO.

Case_ 1. As .we have alreddy seen above, the reaction
in. the combusblon zone occurs in a gas, the composition of
which is . near that of the f inal Droducts. In the cooled
final products the concentration of carbon monoxide will

be (C0), = (CO), - (C0,), where (CO) is the number -
of'molecules of CO in a unit .volume o the initial mix-
ture -and (coa) is the number of molecules of COp in

a unit of volume of the final products (after their cool-
ing to temperature T, } or, what amounts to the same thing,
the number of burned molecules of C€G. 'In the combustion
zone where the temperature ig near the maximum temperature
of combustion T,. the number of (0 molecules in unit-
volume (the actual concerntration of CO) will be

T
[col = ;—‘12 [col,

The number of molecules of Hy0 in the combustion zone
varies in relation to {(Hz0), only in the ratio T,/Ty
since H,0 1s not required in the reaction. Hence the
actual concentration of Hy0 will be

. _ To

Thus

v = ge -B/RT _§3>2 (Ez0] [c0] (38)

We sce that in the above exprsssion the oxygen concen-
tration, that is, the oanly concentration which varies
considerably in the combustion zone does not enter., Thus
in realtion to O, the reaction is of the first order and
therefore the mathematical expression for the velocity

of the flame propagation will be similar to formula (16).

For the sake of clearness, however, we shall derive
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this expression from the goneral formula (12)

| VA
v = = g 2 /*v ar = —— /em'f (39

‘mt

-

By substituting w from formula (38) and carrying ont

the corrcsponding computations, we fingd

, , ,
17,2 TH/RT g €0}, -
Vo = 1400 —2=% [ 30]o£ a]: (40)
E (c0,],"

where E = 25, 000,

We shall derive formula (40). -Substituting w from

formula (38) under the integral sign of formula (39)
obtain

T,
RT,2 (TN -B/RD,
J/‘w daT = 2 _E?— Ef> e quoj [COJI (41)
o ‘
1 N, 2 & -%Z/RT
e 2R e (B g
‘ Po *Po 1

Accordlng to the klnetic theory of gases the heat con-
ductivity is .

1 C
A= lup 3

where C 1is the molecular SpGlelc heat of the mixture
(2t the combustion temperature Z.9)
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Z = Jfggozu =,£%

where n  is the number of molecules in o unit volume of
the mixture at the combustion temperature and equal to
ngTo/Ty (where ng is the number of molecules in the
cold mixture). For T = T, the thermal velocity of the
moloculas is

u = /Ty
= %s00/ 700

where ‘Uzgg is the velocity of the molececulcs at room
temperature, that is, for our mixture wu,,, = 5 x 10* cm/sec,

2 108
u”C _ 75x 10" T,
pn g 300 B,

since Q'(00,); = Lp, 1is the heat given up in the combustion
of & unit volume of the mixture.

where M is the ratio of the weight of the burning €O
mplecules to the weight of all molecules in the initial
mixture, thet is, in view of the nearncss of the molecular
welghts of CC, O and N, and because the burned CO

is equal to (CO03),

b - __.[ C_,O_ 2 ] 1
Mg = n
0

and hence
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where the heat of formation of amoleculeofCOy; is Q =
- 7-%x 10%* -~calorics. Substituting all the obtaincd values
in formula (42) we obtein formula (40) taking a mean value

OI p. : 30.

Lnse 2.~ For a deficiency of €O 'its concentratiocn
in the conbustiosn zone is small and rapidly changes alen
the zone. Since the reaction velocity is proportional to
(00) we should herc make use of the same derivation that
was mnrde above for monomolecular rcactions. According to
formula (21) the CO concentration in the combustion zone

is

T g
0] = [CO L e
Substituting this expression in formula (37) and inte-
grating we readily obtain

1
3 _ \2 2.2 _-g/qT
~ U To RT4 > A S
/w am = =2 ) =2 ze [co] [Ez0] (43)

hig expression with (41) we sce that the former

7
-

UOB"J_')ernr’
v in thnt for the concentration 2(CO)1 there is

t
differs onl
ed

N, Cp ATy
substitu the magnitude (Co)eff = 3 3 (CO)O and
(co)
since for deficiency of (O 0 = Lo
L Q!
CpPo RF,7 ' ' :
= SRPo =17 (44)

Cobeff T E

For monomolecurlar reactions, however, as we have seen,
this magnitude being multiplied by T,/T, corresponds to
the actual concentration (CO) in the reaction zone. Thus,
the fersula for the flame propagatlon velocity in mixtures
witn a defieiency of . CO.. is the same as for the case of a
considerable excess of GO excopt that instead of (CO)
here is substituted (CO)gggs Practically, however, a
coasiderable difference is ootalncd, Whereas in rich

CO mixtures = (C0), increascs with increase in (€0), in
rich 05 mixtures (CO).r¢ as is scen from formula (44)



68 NACA Teéchnical Memorandum No, 1026

does not depend on (00)0, if the combustion temperature
is maintained constant (for example, w1th the aid of heat-~
ing of the mixture by somec mothod).. :

We thus arrive at the conclusion that the velocity
of flame propagation in mixtures with equal combustion
temperature remains coanstant for all mixturcs with excess
O, and is independent of the excess of 0. This con-
clusion was confirmed by our coworker, Barsky, who mceasured
the velocity of flame propagation in mixtures with various
excesses of oxygen and the same concentration (C0) . (vary-
ing the ratio O,/N, in the mixture and thus mainfaining
a constant combust1on temperature). The flame propagation
velocity actually did not depend on the excess oxygen. On
varying by the samec method the ©CO content in mixtures
with ocxcess C0 and keeping the quuntltJ of oxygen the
same (that is, again maintsining T, constant), Barsky,
in correspondence with formula (40), showed that the veloc-
ity of flame propagation is proportlonul to the square root
of the exccss €0, that is, ,/ (co)

For a simultanecouns variation of both components the
combustion temperature must necessarily likewise vary and
it is'impossible by such simple method to bring ocut the
dependence of the reaction velocity on (O and Og. Bx-
poriments of this kind, conducted by other authors, are
fundamentally in error. By utilizing, however, a certain
initial. preheating of the mixture it 1s possible to maintain
T, constant on varying the ratio of the components. HMaking
use of the data of Passauer and others (reference 5) Zel-
dovich conducted such o test of the theory and arrived at
the same result, namely, that the propagation velocity at
constant T, doecs not depend on Oy for an cxcess of Oy
and is proportional to ’(COS for excess (0O0. According
to formula (40) the propagatlon veloclty is proportional

to ./(HQBS (that is, to the sguare root of the conceon-
tration or° tho partial pressurc of the water vapor).

On replotting the raosdlis of Fiock and Marvin, shown
in figure 15, in coordinates v = (E,0), we obtain go»od
straight lines in agreement with the theory (figure 21).
For large water vapor contents there are deviations for
the reason at least that the thermal character of the
mixture then beging to change.,

As regards the dependence of the propagation velocity
on the pressure of the mixture it follows from formula (40)
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that for constant percent of moisture content the prop-

“agation velocity "does not depend on-the -pressure-(because

(co),, (coz), (B,0), are proportional to p) and at con-
stant partial vapor prpssure v is inversely proportional
to JT. We know that just this 'kind of dependonce on the
pressure is observed in experiment. : »

‘It was mogt interesting to compare the computed

absolute value of vg for mixtures of wverious ratios
of C0 to air., The computation led to the results shown
by the dotted curve of figure 10. There are, to be sure,

certain deviations from the test results in the region of
the maximum but these, however, are of the sane rder of
magnitude as the deviations in the test results, A similar
computation for mixztures of CO0 with nitrogen and oxygen
in various proportions likewise led to good agreement with
the test results of JdJahn given in figure 12, In general,
it may be assumed said, that the approximate theory gives

a fair description of the test results in this case,

A comparison was furthermore masde between the com-
puted and observed propagation velocities for various
initial temperaturss T, for various CO air mixtures,
It was found that the dev1at10ns between theory and ex-
periment in this case are not large. A qualitative ex-
planation was also obtained of the fact that the increase
of the propagation velocity with the pressure in oxygen
mixtures is small., The fact is that whereas it is per-
missible with air mixtures not to take into account the
incomplete combustion - .associated with dissociation, in
the case of oxygen mixtures where temperatures up to
3000°X and above are developed, it is necessary to take
dissociation into account. Details of the computation
will be found in our article (reference 6) while here
we give the result only. The computation leads to an
increase of the velocity with the pressure as p® where
n £ 0.12; whereas experiment gives the increase of the
velocity with pressure as p® where m & 0.2. Thus in
this case (if the tests are considered reliable) the
theory gives only the qualitatively corresct resuwlt, namely,
a small incrcase of Vs with the pressure in rich oxygen
mixtures. ‘

Summarizing all that has been said above we may state
that the new theory of combustion, through the choice of the
form of kinetic law for the rate of oxidation of (€O, which
law contains only a single arbitrary constant (E = 25,000),
rationally accounts for all the numerous experimental re-
sults on the flame propagation of €0 in alr and in oxygen,
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guantitatively in most cases and qualitatively in only

a fow cases. It is very interesting.to ¢onfirm directly
the corrcctness of the kinetic law postulated by us for
"the rate of oxidation of (0. No experimental method,
unfortunately, has up to the present time been developed
for the study of the reaction kinetics at high temperatures
such that the reaction proceeds halfway in a time iaterval
of 1073 - 10™% seconds. We shall, therefore, proceed by
a-logical method and by examining closely the question of
the mechanism of the oxidation of (€O, attempt to find

the reguired kinetic law.

It has been assumed that the catalytic action of
water vapor in the oxidation of (€O is based on a con-
version reaction of the water vapor: HzO0 + 00 = COp + Hg.
The hydrogen thus obtained ix soon oxidized and therefore
the total oxidizing reaction proceeds with the reaction
velocity of a conversion reaction. -Assuming that the
conversion proceeds according to the simple bimolecular
law we very simply arrive a2t the required law for the
oxidation of (O: :

w = Zg_‘E/RT[coj[Hgo]

Assuming the activation energy of the conversion reaction
equal to 25,000 calories we obtain the law (37) employed
by us. Unfortunately the velocity of conversion computed
by the above formula does not at all correspond to the -
meager experimental facts which are available for the
study of a homogeneous conversion reaction. Such a re-
action in technical procedure, as is known, occurs with
catalyzers and therefore few have concerned themselves
with homogeneous conversions On the velocity of conversion
there are available data by Thompson (reference 7) and
Kondratyev (reference 8) for reactions in quartz vessels
at T Z 1000°K., ©For the conversion velocity under these
conditions Thompson obtains e"B/RT = 2.5 x 10714 an4
Kondratyev a value one hundred times as large, namely,
10"%2, According to formula (37) the value obtained

is approximately 10~6, thet is, 10° times as large
compared with the results of Thompson »nd 10° times as
large compared with the results of Kondratyev. The re-
sults of Thompson should be considered as more correct
because he experimented with a vessel of greater radius
and the possibility of catalysis by the wall was less
probable than was the case with Kondratyev. In any case
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we sec there can be no gquestion of such a simple sex=-

~-planation-.of :the. law (37). - .- . .

Investigations of the velocity of the oxidation
reaction of CO0 at temperatures of the order of 1000°K
in the presence of water vapor show that this reaction
is complicated by the chain process, the velocity being
proportional to  (CO0)(Hy0) and inversely proportional to
{02)s It is very probable, however, that under these
conditions the primary active centers required for the
start of the chain arise at the walls of the vessel as
a result of a heterogeneous process, which, of course, does
not ocecur at high temperatures and especially in flames.
For this reason the extrapolation of the data obtained
under the above-mentioned conditions to the flame will
hardly be justified. Moreover, reactions in.closed
vessels have received but‘&ittle gtudy. We are fully
justified in stating, however, that a reaction which
appears as a chain reaction at T & 1000° remains a chain
reaction at any high temperature whatever. It is well
known, moreover, that the flames of moist (O reveal
in the spectrum the OH radical. Xondratvev further-
more, guantitatively measured {by thc method of light
absorbtion) the concentration of the OH radicals in
rarified flames in moist CO having a tomperature of
1000° = 1200° X and showed that the conceniration of OH
exceeds its equilibrium valve a thousand times. These
facts clearly indicate that the OE radical is one of
the-active centers of the chain oxidizing reaction of (0.

Analyzing all possible chain moechanisms of this type,
we arrived at the couclusion that only one of them is
logically possible at high temperaturcs. This chain con-
sists of the following steops of elcmentary reactions:

1, H+ 0y = OH + 0 1
. ‘ S Chain
2. 0O+ OH = GOy + § J
3e 0O+ CO = COa
4. 0+ Hp = OH + H Branched chains

5. OE + Hp

1t

HoO + H

As a result of the branching of the chain the total
oxidizing reaction will be accelerated in time until the
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concentrations of OH and H reach valwues such that the
reverse reaction of (4) 0H + H—>H, + 0O ©balances the
direct reaction O + H, —>0H + H. After this a stationary
oxidizing reaction is established. It is easy to show that
the direct reactions 4 and 5 will be in equilibrium with
the reverse reactions, that is, in the reaction zone there
will occur the equilibriums

ana

. 5. OH + Hy<—2H,0 + H

The equilibrium constants X, and Ky of these reactions
are well known, -

As regards the constants X,, Xy, and K, corre-
sponding to the velocities of reaction 1, 2, and 3 the
~gituation is less favorable, For the constants ¥X; and
K, there are approximately known the activation energies
E, = 26,000 £ 4000, E, = 10,000 = 300C. The coefficient
before the exponential for the first reaction is not known
and for the second is of the order 0.01%. o study was
made at all of the constant ¥z If it is assumed that
reaction 3 occurs for every third impact then at atmospheric
pressure K, £ 107°, 1If the most probable values of the
constants from the experimental and theoretical points of
view are taken, the series of reactions leads to a kinetic
law which agrees with expression (37) in the sense of the
dependence of the velocity on the temperature and on the
concentrations (CO) and (Hz0); (it gives a practical non-
dependence on (0y))., For mixtures with excess €O, however,
it gives an absolute reaction velocity about 10 times less
than the actual, Since the measured values of the kinetic
constants of the elementary reactions are bad the matter
is evidently associated with the not entirely correct choice
of these constants. In general, we may say, that the check
of the new theory on the oxidation of €0 1leads to satis-
factory results. ’

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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Figure 1.
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Figure 7.

Figure 10.~ Normal velocity of
flame propagation
of carbon monoxide-air mixtures.

Full curve - tests of Passauer,
x - tests of Chitrin,

o -~ tests of Barsky,

D - tests of Jahn. The dotted
curve was computed by the
formalas of the new theory of
the flame propagation with
the kinetic law (37).

Flgs. 1,7,8,9,10,11

Figure 8. Figure 9.
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Figure 11l.- Normal velocity of

' flame propagation in
mixbtures of CO with atmospheric
No + 02. The percent composition
of N of each curve is
cons ant Jakm),
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Figure 3.- Wave front moving
in a horizontal
tube (4 = 5 cm). The burnin
mixture consists of 55 :
percent CO and 45 percent
air. At point a flame
oscillations arise.
(photograph by Barsky).

Distar ce

Figure 4.~ An example of uniform flame propagation.
(Photograph taken on a rotating film by Sokolik).
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